
1

Tools for Hybrid Systems Reachability

Goran Frehse
Universite Grenoble 1, Verimag

- with work from Thao Dang, Antoine Girard and Colas Le Guernic -

QMC’10, Copenhague, March 5, 2010

2

Outline

I. Hybrid Automata and Reachability

II. Linear Hybrid Automata

III. Piecewise Affine Hybrid Systems

IV. Support Functions

3

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

Verification
(algorithmic)

4

Formal Verification

Key Problems
– computable (decidable) only for simple dynamics

– computationally expensive

– representation of / computation with continuous sets

5

Formal Verification

Fighting complexity with overapproximations
– simplify dynamics

– set representations

– set computations

Overapproximations should be
– conservative

– easy to derive and compute with

– accurate (not too many false positives)

6

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

Verification
(algorithmic)

7

Formal Verification

Model of
Physics

Model of
Software

Model of System

continuous dynamics discrete dynamics

ẋ = f(x)

8

Modeling Hybrid Systems

Example: Bouncing Ball
– ball with mass m and position x in free fall

– bounces when it hits the ground at x = 0

– initially at position x and at rest

x

0

Fg

9

Condition for Free Fall
– ball above ground:

First Principles (physical laws)

Part I – Free Fall

• gravitational force :
Fg = −mg

g = 9.81m/s2

• Newton's law of motion :
mẍ = Fg

x ≥ 0 x

0

Fg

10

Obtaining 1 st Order ODE System

Part I – Free Fall

Fg = −mg
mẍ = Fg

• ordinary differential equation ẋ = f(x)

• transform to 1st order by introducing variables
for higher derivatives

• here: v = ẋ:
ẋ = v
v̇ = −g

x

0

Fg

11

Part II – Bouncing

Conditions for “Bouncing”

Action for “Bouncing”

• ball at ground position: x = 0

• downward motion: v < 0

• velocity changes direction

• loss of velocity (deformation, friction)

• v := −cv, 0 ≤ c ≤ 1

12

Combining Part I and II

Free Fall

Bouncing

• while x ≥ 0,
ẋ = v
v̇ = −g

• if x = 0 and v < 0
v := −cv

continuous dynamics

discrete dynamics

ẋ = f(x)

x ∈ G
x := R(x)

13

Hybrid Automaton Model

x ≥ 0 bounce

x = 0 ∧ v < 0
v := −cv

freefall

ẋ = v
v̇ = −g

x = x0
v = 0

flow

location

invariant

discrete transition

guard

label

reset

initial conditions

14

Hybrid Automata - Semantics

Run
– sequence of discrete transitions and time elapse

Execution
– run that starts in the initial states

x(t)

x(t)

x(t)

15

Execution of Bouncing Ball

time t

position x

x(t)
x(t)

x(t)
x(t)

x(t)

δ δ δ δ δ

x

0

…

time t

velocity v

v(t)
v(t)

v(t)
v(t)

v(t)

δ δ δ δ δ

v

0

…

16

Execution of Bouncing Ball

State-Space View (infinite time range)

position x

velocity v

discrete transition

x

0

x(t)

x(t)

x(t)

17

Incorrect /
Unknown

Revise
Design

Formal Verification

Model of
System

Formal
Specification

Correct

Verification
(Reachability)

18

Compute successor states

0

R0

Computing Reachable States

• discrete transitions : Postd(R)

• time elapse : Post c(R)

R1=Postc(R0)

R2=Postd(R1)

R3=Postc(R2)

19

Computing Reachable States

Fixpoint computation

Problems
– in general termination not guaranteed

– time-elapse very hard to compute with sets

• Initialization: R0 = Ini

• Recurrence: Rk+1 = Rk ∪ Postd(Rk) ∪ Post c(Rk)

• Termination: Rk+1 = Rk ⇒ Reach = Rk.

20

Chapter Summary

Why should we care?
– Reachability Analysis is a set-based computation that can

answer many interesting questions about a system (safety,
bounded liveness,…)

What’s the problem?
– The hardest part is computing time elapse.

– Explicit solutions only for very simple dynamics.

What’s the solution?
– First study simple dynamics.

– Then apply these techniques to complex dynamics.

21

Outline

I. Hybrid Automata and Reachability

II. Linear Hybrid Automata

III. Piecewise Affine Hybrid Systems

IV. Support Functions

22

In this Chapter…

A very simple class of hybrid systems

Exact computation of discrete transitions and time
elapse
– Note: Reachability (and pretty much everything else) is

nonetheless undecidable .

A case study

23

Linear Hybrid Automata

Continuous Dynamics

• piecewise constant: ẋ = 1

• intervals: ẋ ∈ [1, 2]

• conservation laws: ẋ1 + ẋ2 = 0

• general form: conjunctions of linear constraints

a · ẋ ⊲⊳ b, a ∈ Zn, b ∈ Z, ⊲⊳ ∈ {<,≤}.

= convex polyhedron over derivatives

24

Linear Hybrid Automata

Discrete Dynamics

• affine transform: x := ax+ b

• with intervals: x2 := x1 ± 0.5

• general form: conjunctions of linear constraints (new value x′)

a · x+ a′ · x′ ⊲⊳ b, a, a′ ∈ Zn, b ∈ Z, ⊲⊳ ∈ {<,≤}

= convex polyhedron over xxxx and xxxx’

25

Linear Hybrid Automata

Invariants, Initial States

• general form: conjunctions of linear constraints

a · x ⊲⊳ b, a ∈ Zn, b ∈ Z, ⊲⊳∈ {<,≤},

= convex polyhedron over xxxx

26

Reachability with LHA

Compute discrete successor states Postd(S)

– all x’ for which exists x ∈ S s.t.

• x ∈ G

• x’ ∈ R(x) � Inv

Operations:
– existential quantification

– intersection

– standard operations on convex polyhedra, but of exponential
complexity

27

Reachability with LHA

Compute time elapse states Postc(S)

Theorem [Alur et al.]

– Time elapse along arbitrary trajectory iff time elapse along
straight line (convex invariant).

– time elapse along straight line can be computed as projection
along cone [Halbwachs et al.]

Inv

28

Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives

successors

projection
cone

1. get projection
cone

1. get projection
cone

2. time elapse by
projection

2. time elapse by
projection 3. compute

successors of
transitions

3. compute
successors of
transitions

29

Multi-Product Batch Plant

85

30

Multi-Product Batch Plant

Cascade mixing process

– 3 educts via 3 reactors
⇒ 2 products

Verification Goals
– Invariants

• overflow

• product tanks never empty

– Filling sequence

Design of verified
controller

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12

31

Verification with PHAVer� Controller + Plant

– 266 locations, 823 transitions
(~150 reachable)

– 8 continuous variables� Reachability over infinite time

– 120s—1243s, 260—600MB

– computation cost increases
with nondeterminism
(intervals for throughputs,
initial states)

Controller Controlled Plant

32

Verification with PHAVer

33

Outline

I. Hybrid Automata and Reachability

II. Linear Hybrid Automata

III. Piecewise Affine Hybrid Systems

IV. Support Functions

34

In this Chapter…

Another class of (not quite so) simple dynamics
– but things are getting serious (no explicit solution for sets)

Exact computation of time elapse only at discrete
points in time
– used to overapproximate continuous time

Efficient data structures

35

Piecewise Affine Hybrid Systems

Affine dynamics
– Flow:

– For time elapse it’s enough to look at a single location.

ẋ = Ax+ b (deterministic)

ẋ ∈ Ax+B, with B a set (nondeterministic)

36

Linear Dynamics

Let’s begin with “autonomous” part of the dynamics:

Known solutions:
– analytic solution in continuous time

– explicit solution at discrete points in time
(up to arbitrary accuracy)

Approach for Reachability:
– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!

ẋ = Ax, x ∈ Rn

37

Time-Discretization for an Initial Point

Analytic solution:

Explicit solution in discretized time (recursive):
x0 = xIni
xk+1 = eAδxk

x(t) = eAtxIni

2δ 3δδ0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eAδ

= linear transform

x(δ(k + 1)) = eAδx(δk)

• with t = δk :

38

Time-Discretization for an Initial Set

Explicit solution in
discretized time

Acceptable solution for purely continuous systems
– x(t) is in ǫ(δ)-neighborhood of some Xk

Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times

– if transitions are “missed,” x(t) not in ǫ(δ)-neighborhood

2δ 3δδ0

X0

X1

X2

X3

t

X0 = XIni
Xk+1 = eAδXk

Reach[0,3δ](XIni)

39

Bouncing Ball

– In other examples this error might not be as obvious…

X90 = ∅

40

Goal:
– Compute sequence Ωk over bounded time [0,Nδ] such that:

Approach:
– Refine Ωk by recurrence:

– Condition for Ω:

Reachability by Time-Discretization

Reach[0,Nδ](XIni) ⊆ Ω0 ∪ Ω1 ∪ . . . ∪ ΩN

2δ 3δδ0 t

Reach[0,3δ](XIni)

Ω0

Ω1

Ω2

Ωk+1 = eAδΩk

Reach[0,δ](XIni) ⊆ Ω0

41

Time-Discretization with Convex Hull

Overapproximating Reach[0,δ]:

X0

X1

Reach[0,δ](XIni) Conv(X0, X1) Bloat(Conv(X0, X1))

42

Time-Discretization with Convex Hull

Bouncing Ball:

Ω0

X0

X1

X0

X1

Ω0

43

Nondeterministic Affine Dynamics

Let’s include the effect of inputs:

– variables x,…,xn, inputs u,…,up

Input u models nondeterminism

– used later for overapproximating nonlinear dynamics

ẋ = Ax+Bu, x ∈ Rn, u ∈ U ⊆ Rp

ẋ ∈ Ax+BU

44

Nondeterministic Affine Dynamics

Analytic Solution

2δ 3δδ0 t

Reach[0,3δ](XIni)

influence of inputs

x(t) = eAδx(0) +

∫ τ

0

eA(δ−τ)Bu(τ)dτ

autonomous
dynamics

influence of
inputs

45

Nondeterministic Affine Dynamics

How far can the input “push” the system in δδδδ time?

Minkowski Sum: A⊕B = {a+ b | a ∈ A, b ∈ B}

• V = box with radius e||A||δ−1
||A|| supu∈U ||Bu||

Ω0 = Bloat(Conv(XIni, e
AδXIni))⊕ V

Ωk+1 = eAδΩk ⊕ V

46

Nondeterministic Affine Dynamics

2δ 3δδ0 t

Ω0

Ω1

Ω2 = eAδΩ1 ⊕ V

eAδΩ1

47

Wrapping Effect

Fight complexity by overapproximation

Overapproximated Sequence

– accumulation of approximations → Wrapping Effect

– exponential increase in approximation error!

Ω̂k+1 = Approx (eAδΩ̂k ⊕ V)

48

Wrapping Effect

Error Propagation in Conventional Algorithm:

49

Wrapping Effect-Free Algorithm

Computing the sum of Sequences instead of a
sequence of sums [Girard, LeGuernic, Maler, 2006]

50

Outline

I. Hybrid Automata and Reachability

II. Linear Hybrid Automata

III. Piecewise Affine Hybrid Systems

IV. Support Functions

51

Support Functions

0

d

max. signed distance of P to
origin projected in direction d

P

52

Support Functions

0

If we know the value of ρP (d),
we know P is in the halfspace

d

P

53

d1

Support Functions

0

If we know ρP (d1), ρP (d2),… we
know P is inside the
intersection of the halfspaces

P

d2

d3

54

d1

Support Functions

0

If we know ρP (d1), ρP (d2),… we
know P is inside the intersection of
the halfspaces
= outer polyhedral approx.

P

d2

d3

55

Computing with Support Functions

Many set operations are simple operations on
support functions
– Affine Transform:

– Minkowski sum:

– Convex hull:

Problems:
– Containment: use outer/inner polyhedral approx.

– Intersection: approx. intersection with halfspace cheap,
with polyhedron = multivariable optim. problem

56

Comparison of Set Representations

Operators Polyhedra Zonotopes Support Functions

Constraints Vertices

Affine transform - ++ ++ ++

Minkowski sum -- -- ++ ++

Intersection ++ -- -- +/-

Containment + -- ? +/(-)

Convex hull -- + -- ++

57

Computing with Support Functions

If explicit set representation needed (display,
simplification,…), sample the support function for
given directions and use the outer polyhedral
approximation.
– arbitrarily close if enough directions are used

Computing the support function of a polyhedron
– solve linear program (very cheap)

58

Filtered Switched Oscillator

Switched oscillator
– 2 state variables

– similar to many circuits
(Buck converters,…)

plus m th order filter
– damps output signal

Piecewise affine dynamics
– 4 discrete states

– total 2+m continuous state variables

59

Filtered Switched Oscillator

2nd order oscillator + 8 th order filter
– 10 state variables

2*n box constraints
(axis directions)

2*n2 octagonal constraints
(± xi ± xj)

60

Filtered Switched Oscillator

Tool Performance (on virtual machine)

1

10

100

1000

4 10 16 22 28 34 40
Box
Octagonal

time in s
(VM)

Nb. of variables

slower due to 8 discrete
jumps instead of 6
until convergence

61

Bibliography�

Hybrid Systems Theory

– Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science 138:3-34, 1995

– Thomas A. Henzinger. The theory of hybrid automata. Proceedings of the 11th Annual
Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,
1996, pp. 278-292�

Linear Hybrid Automata

– Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi, HyTech: The next
generation. RTSS’95

– Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech.
HSCC’05

– Goran Frehse. Tools for the verification of linear hybrid automata models. In J. Lunze
and F. Lamnabhi-Lagarrigue, editors, Handbook of Hybrid Systems Control. Cambridge
University Press, 2009.

62

Bibliography

Affine Dynamics

– E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability

Analysis of Piecewise-Linear Dynamical Systems. HSCC’00

– A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets

of linear time-invariant systems with inputs. HSCC’06

Support Functions

– C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support

functions. CAV’09

– G. Frehse, R. Ray. Design Principles for an Extendable Verification Tool for

Hybrid Systems. ADHS’09

63

Verification Tools for Hybrid Systems

HyTech: LHA
– http://embedded.eecs.berkeley.edu/research/hytech/

PHAVer: LHA + affine dynamics
– http://www-verimag.imag.fr/~frehse/

d/dt: affine dynamics + controller synthesis
– http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html

Matisse Toolbox: zonotopes
– http://www.seas.upenn.edu/~agirard/Software/MATISSE/

HSOLVER: nonlinear systems
– http://hsolver.sourceforge.net/

and more…

