## **Tools for Hybrid Systems Reachability**

VERIMAG



#### Goran Frehse Universite Grenoble 1, Verimag

#### - with work from Thao Dang, Antoine Girard and Colas Le Guernic -

QMC'10, Copenhague, March 5, 2010

### Outline

- I. Hybrid Automata and Reachability
- **II.** Linear Hybrid Automata
- **III. Piecewise Affine Hybrid Systems**
- **IV. Support Functions**



### • Key Problems

- computable (decidable) only for simple dynamics
- computationally expensive
- representation of / computation with continuous sets

### • Fighting complexity with overapproximations

- simplify dynamics
- set representations
- set computations

#### • Overapproximations should be

- conservative
- easy to derive and compute with
- accurate (not too many false positives)





# **Modeling Hybrid Systems**

#### • Example: Bouncing Ball

- ball with mass m and position x in free fall
- bounces when it hits the ground at x = 0
- initially at position  $x_0$  and at rest



### Part I – Free Fall

- Condition for Free Fall
  - ball above ground:  $x \ge 0$
- First Principles (physical laws)
  - gravitational force :

$$F_g = -mg$$
$$g = 9.81 \text{m/s}^2$$

• Newton's law of motion :

$$m\ddot{x} = F_g$$



### Part I – Free Fall

$$\begin{array}{rcl} F_g &=& -mg \\ m\ddot{x} &=& F_g \end{array}$$

#### • Obtaining 1<sup>st</sup> Order ODE System

- ordinary differential equation  $\dot{x} = f(x)$
- transform to 1st order by introducing variables for higher derivatives

• here: 
$$v = \dot{x}$$
:

$$\dot{x} = v$$
  
 $\dot{v} = -g$ 



## **Part II – Bouncing**

### • Conditions for "Bouncing"

- ball at ground position: x = 0
- downward motion: v < 0

### • Action for "Bouncing"

- velocity changes direction
- loss of velocity (deformation, friction)
- v := -cv,  $0 \le c \le 1$

### **Combining Part I and II**

#### • Free Fall

• while  $x \ge 0$ ,  $\dot{x} = v$  $\dot{v} = -g$ 

### continuous dynamics

 $\dot{x} = f(x)$ 

### • Bouncing

• if 
$$x = 0$$
 and  $v < 0$ 

v := -cv

#### discrete dynamics



### **Hybrid Automaton Model**



### **Hybrid Automata - Semantics**

#### • Run

- sequence of discrete transitions and time elapse

#### • Execution

- run that starts in the initial states



### **Execution of Bouncing Ball**



15

### **Execution of Bouncing Ball**

• State-Space View (infinite time range)





### **Computing Reachable States**

#### • Compute successor states

- discrete transitions :  $Post_d(R)$
- time elapse :  $Post_c(R)$



## **Computing Reachable States**

#### • Fixpoint computation

- Initialization:  $R_0 = Ini$
- Recurrence:  $R_{k+1} = R_k \cup Post_d(R_k) \cup Post_c(R_k)$
- Termination:  $R_{k+1} = R_k \Rightarrow Reach = R_k$ .

#### • Problems

- in general termination not guaranteed
- time-elapse very hard to compute with sets

# **Chapter Summary**

#### • Why should we care?

 Reachability Analysis is a set-based computation that can answer many interesting questions about a system (safety, bounded liveness,...)

#### • What's the problem?

- The hardest part is computing time elapse.
- Explicit solutions only for very simple dynamics.

#### • What's the solution?

- First study simple dynamics.
- Then apply these techniques to complex dynamics.

### Outline

I. Hybrid Automata and Reachability

### **II.** Linear Hybrid Automata

**III. Piecewise Affine Hybrid Systems** 

**IV. Support Functions** 

## In this Chapter...

- A very simple class of hybrid systems
- Exact computation of discrete transitions and time elapse
  - Note: Reachability (and pretty much everything else) is nonetheless undecidable.
- A case study

### **Linear Hybrid Automata**

#### • Continuous Dynamics

- piecewise constant:  $\dot{x} = 1$
- intervals:  $\dot{x} \in [1, 2]$
- conservation laws:  $\dot{x}_1 + \dot{x}_2 = 0$
- general form: conjunctions of linear constraints

$$a \cdot \dot{x} \bowtie b, \qquad a \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<,\le\}.$$

= convex polyhedron over derivatives

### **Linear Hybrid Automata**

#### • Discrete Dynamics

- affine transform: x := ax + b
- with intervals:  $x_2 := x_1 \pm 0.5$
- general form: conjunctions of linear constraints (new value x')

 $a \cdot x + a' \cdot x' \bowtie b, \qquad a, a' \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<,\le\}$ 

= convex polyhedron over x and x'

### **Linear Hybrid Automata**

#### • Invariants, Initial States

• general form: conjunctions of linear constraints

 $a \cdot x \bowtie b, \qquad a \in \mathbb{Z}^n, b \in \mathbb{Z}, \bowtie \in \{<, \le\},$ 

= convex polyhedron over x

# **Reachability with LHA**

#### • Compute discrete successor states $Post_d(S)$

- all x' for which exists  $x \in S$  s.t.
  - $x \in G$
  - $x' \in R(x) \cap Inv$

#### • Operations:

- existential quantification
- intersection
- standard operations on convex polyhedra, but of exponential complexity

# **Reachability with LHA**

- Compute time elapse states  $Post_c(S)$
- Theorem <sup>[Alur et al.]</sup>
  - Time elapse along arbitrary trajectory iff time elapse along straight line (convex invariant).



 time elapse along straight line can be computed as projection along cone <sup>[Halbwachs et al.]</sup>

## Reachability with LHA [Halbwachs, Henzinger, 93-97]

9



28



### **Multi-Product Batch Plant**



### **Multi-Product Batch Plant**



### • Cascade mixing process

- 3 educts via 3 reactors  $\Rightarrow$  2 products

### Verification Goals

- Invariants
  - overflow
  - product tanks never empty
- Filling sequence
- Design of verified controller

### **Verification with PHAVer**



Controller

**Controlled Plant** 

• Controller + Plant

- 266 locations, 823 transitions (~150 reachable)
- 8 continuous variables

#### • Reachability over infinite time

- 120s—1243s, 260—600MB
- computation cost increases with nondeterminism (intervals for throughputs, initial states)

### **Verification with PHAVer**







| Instance | Time [s] | Mem. [MB] | $\mathrm{Depth}^a$ | $Checks^b$ | Automaton |        | Reachable Set |       |
|----------|----------|-----------|--------------------|------------|-----------|--------|---------------|-------|
|          |          |           |                    |            | Loc.      | Trans. | Loc.          | Poly. |
| BP8.1    | 120      | 267       | 173                | 279        | 266       | 823    | 130           | 279   |
| BP8.2    | 139      | 267       | 173                | 422        | 266       | 823    | 131           | 450   |
| BP8.3    | 845      | 622       | 302                | 2669       | 266       | 823    | 143           | 2737  |
| BP8.4    | 1243     | 622       | 1071               | 4727       | 266       | 823    | 147           | 4772  |

 $^{*}$  on Xeon 3.20 GHz, 4GB RAM running Linux;  $^{a}$  lower bound on depth in breadth-first search;  $^{b}$  number of applications of post-operator

### Outline

- I. Hybrid Automata and Reachability
- **II. Linear Hybrid Automata**
- **III. Piecewise Affine Hybrid Systems**
- **IV. Support Functions**

## In this Chapter...

- Another class of (not quite so) simple dynamics
  - but things are getting serious (no explicit solution for sets)
- Exact computation of time elapse only at discrete points in time
  - used to overapproximate continuous time
- Efficient data structures

## **Piecewise Affine Hybrid Systems**

#### • Affine dynamics

– Flow:

 $\dot{x} = Ax + b$  (deterministic)

 $\dot{x} \in Ax + B$ , with B a set (nondeterministic)

- For time elapse it's enough to look at a single location.

## **Linear Dynamics**

• Let's begin with "autonomous" part of the dynamics:

 $\dot{x} = Ax, \quad x \in \mathbb{R}^n$ 

#### • Known solutions:

- analytic solution in continuous time
- explicit solution at discrete points in time (up to arbitrary accuracy)

#### • Approach for Reachability:

- Compute reachable states over finite time:  $Reach_{[0,T]}(X_{Ini})$
- Use time-discretization, but with care!

### **Time-Discretization for an Initial Point**

- Analytic solution:  $x(t) = e^{At}x_{Ini}$ 
  - with  $t = \delta k$ :  $x(\delta(k+1)) = e^{A\delta}x(\delta k)$   $x_{0}$   $x_{1}$   $x_{2}$   $x_{1}$   $x_{2}$   $x_{3}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{5}$   $x_{4}$   $x_{5}$   $x_{5}$
- Explicit solution in discretized time (recursive):

$$\begin{array}{rcl} x_{0} & = & x_{Ini} \\ x_{k+1} & = & e^{A\delta}x_{k} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

### **Time-Discretization for an Initial Set**



- Acceptable solution for purely continuous systems
  - -x(t) is in  $\epsilon(\delta)$ -neighborhood of some  $X_k$
- Unacceptable for hybrid systems
  - discrete transitions might "fire" between sampling times
  - if transitions are "missed," x(t) not in  $\epsilon(\delta)$ -neighborhood



– In other examples this error might not be as obvious...

## **Reachability by Time-Discretization**

• Goal:

- Compute sequence  $\Omega_k$  over bounded time  $[0, N\delta]$  such that: Reach $_{[0,N\delta]}(X_{Ini}) \subseteq \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_N$ 

### • Approach:

- Refine  $\Omega_k$  by recurrence:

$$\Omega_{k+1} = e^{A\delta}\Omega_k$$

- Condition for  $\Omega_{o}$ : Reach<sub>[0, $\delta$ ]</sub> $(X_{Ini}) \subseteq \Omega_{0}$ 



### **Time-Discretization with Convex Hull**

• Overapproximating  $Reach_{[0,\delta]}$ :



### **Time-Discretization with Convex Hull**

• Bouncing Ball:



### **Nondeterministic Affine Dynamics**

• Let's include the effect of inputs:

 $\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, u \in U \subseteq \mathbb{R}^p$ 

- variables  $x_1, \ldots, x_n$ , inputs  $u_1, \ldots, u_p$
- Input *u* models nondeterminism

 $\dot{x} \in Ax + BU$ 

- used later for overapproximating nonlinear dynamics

### **Nondeterministic Affine Dynamics**

• Analytic Solution



44

### **Nondeterministic Affine Dynamics**

• How far can the input "push" the system in  $\delta$  time?

•  $V = \text{box with radius } \frac{e^{||A||\delta} - 1}{||A||} \sup_{u \in U} ||Bu||$ 

$$\Omega_{0} = Bloat(Conv(X_{Ini}, e^{A\delta}X_{Ini})) \oplus V$$
  

$$\Omega_{k+1} = e^{A\delta}\Omega_{k} \oplus V$$

• Minkowski Sum:  $A \oplus B = \{a + b \mid a \in A, b \in B\}$ 



#### VERIMAG

### **Nondeterministic Affine Dynamics**



# Wrapping Effect

- Fight complexity by overapproximation
- Overapproximated Sequence

 $\hat{\Omega}_{k+1} = Approx(e^{A\delta}\hat{\Omega}_k \oplus V)$ 

- accumulation of approximations  $\rightarrow$  Wrapping Effect
- exponential increase in approximation error!

# Wrapping Effect

#### • Error Propagation in Conventional Algorithm:



## Wrapping Effect-Free Algorithm

• Computing the sum of Sequences instead of a sequence of sums [Girard, LeGuernic, Maler, 2006]



## Outline

- I. Hybrid Automata and Reachability
- **II. Linear Hybrid Automata**
- **III. Piecewise Affine Hybrid Systems**
- **IV. Support Functions**

### **Support Functions**





we know P is in the halfspace

 $\{x \mid d^T x \le \rho_P(d)\}$ 



### **Support Functions**



0

If we know  $\rho_P(d_1)$ ,  $\rho_P(d_2)$ ,... we know *P* is inside the intersection of the halfspaces

= outer polyhedral approx.

### **Computing with Support Functions**

- Many set operations are simple operations on support functions
  - Affine Transform:  $ho_{AP}(d) = 
    ho_P(A^T d)$
  - Minkowski sum:  $ho_{P\oplus Q}(d)=
    ho_P(d)+
    ho_Q(d)$
  - Convex hull:  $ho_{chull(P,Q)}(d) = \max(
    ho_P(d),
    ho_Q(d))$

#### • Problems:

- Containment: use outer/inner polyhedral approx.
- Intersection: approx. intersection with halfspace cheap,
   with polyhedron = multivariable optim. problem



# **Comparison of Set Representations**

| Operators        | Polyhedra   |          | Zonotopes | Support Functions |  |
|------------------|-------------|----------|-----------|-------------------|--|
|                  | Constraints | Vertices |           |                   |  |
| Affine transform | -           | ++       | ++        | ++                |  |
| Minkowski sum    |             |          | ++        | ++                |  |
| Intersection     | ++          |          |           | +/-               |  |
| Containment      | +           |          | ?         | +/(-)             |  |
| Convex hull      |             | +        |           | ++                |  |

## **Computing with Support Functions**

- If explicit set representation needed (display, simplification,...), sample the support function for given directions and use the outer polyhedral approximation.
  - arbitrarily close if enough directions are used
- Computing the support function of a polyhedron
  - solve linear program (very cheap)

### **Filtered Switched Oscillator**

#### • Switched oscillator

- 2 state variables
- similar to many circuits (Buck converters,...)

#### • plus m<sup>th</sup> order filter

- damps output signal

#### • Piecewise affine dynamics

- 4 discrete states
- total 2+m continuous state variables



### **Filtered Switched Oscillator**

#### • 2<sup>nd</sup> order oscillator + 8<sup>th</sup> order filter

- 10 state variables



2\*n box constraints (axis directions)



### **Filtered Switched Oscillator**

• Tool Performance (on virtual machine)



# **Bibliography**

#### • Hybrid Systems Theory

- Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science 138:3-34, 1995
- Thomas A. Henzinger. The theory of hybrid automata. Proceedings of the 11th Annual Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press, 1996, pp. 278-292

#### • Linear Hybrid Automata

- Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi, HyTech: The next generation. RTSS'95
- Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech. HSCC'05
- Goran Frehse. Tools for the verification of linear hybrid automata models. In J. Lunze and F. Lamnabhi-Lagarrigue, editors, Handbook of Hybrid Systems Control. Cambridge University Press, 2009.

# **Bibliography**

#### • Affine Dynamics

- E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. HSCC'00
- A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. HSCC'06

#### • Support Functions

- C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support functions. CAV'09
- G. Frehse, R. Ray. Design Principles for an Extendable Verification Tool for Hybrid Systems. ADHS'09

# **Verification Tools for Hybrid Systems**

- HyTech: LHA
  - http://embedded.eecs.berkeley.edu/research/hytech/
- PHAVer: LHA + affine dynamics
  - http://www-verimag.imag.fr/~frehse/
- d/dt: affine dynamics + controller synthesis
  - http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
- Matisse Toolbox: zonotopes
  - http://www.seas.upenn.edu/~agirard/Software/MATISSE/
- HSOLVER: nonlinear systems
  - <u>http://hsolver.sourceforge.net/</u>
- and more...