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Probabilities help

• When analysing system performance and dependability

– to quantify arrivals, waiting times, time between failure, QoS, ...

• When modelling uncertainty in the environment

– to quantify imprecisions in system inputs
– to quantify unpredictable delays, express soft deadlines, ...

• When building protocols for networked embedded systems

– randomized algorithms

• When problems are undecidable deterministically

– reachability of channel systems, ...

c© JPK 3



What is probabilistic model checking?
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Other models: probabilistic variants of (priced) timed automata, or hybrid automata
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Discrete-time Markov chain
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a DTMC is a triple (S, P, L) with state space S and state-labelling L

and P a stochastic matrix with P(s, s′) = one-step probability to jump from s to s′
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Time in DTMCs

• Time in a DTMC proceeds in discrete steps

• Two possible interpretations

– accurate model of (discrete) time units
∗ e.g., clock ticks in model of an embedded device

– time-abstract
∗ no information assumed about the time transitions take

• Continuous-time Markov chains (CTMCs)

– dense model of time
– transitions can occur at any (real-valued) time instant
– modelled using negative exponential distributions
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Continuous random variables

• X is a random variable (r.v., for short)

– on a sample space with probability measure Pr

– assume the set of possible values that X may take is dense

• X is continuously distributed if there exists a function f(x) such that:

Pr{X � d} =
∫ d

−∞
f(x) dx for each real number d

where f satisfies: f(x) � 0 for all x and
∫ ∞

−∞
f(x) dx = 1

– FX(d) = Pr{X � d} is the (cumulative) probability distribution function
– f(x) is the probability density function
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Negative exponential distribution

The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of Y :

FY (d) =
∫ d

0

λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• expectation E[Y ] =
R ∞

0
x·λ·e−λ·x dx = 1

λ

• variance Var[Y ] = 1
λ2

the rate λ ∈ R>0 uniquely determines an exponential distribution.
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Exponential pdf and cdf
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Why exponential distributions?

• Are adequate for many real-life phenomena

– the time until a radioactive particle decays
– the time between successive car accidents
– inter-arrival times of jobs, telephone calls in a fixed interval

• Are the continuous counterpart of geometric distribution

• Heavily used in physics, performance, and reliability analysis

• Can approximate general distributions arbitrarily closely

• Yield a maximal entropy if only the mean is known
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Memoryless property

1. For any random variable X with an exponential distribution:

Pr{X > t + d | X > t} = Pr{X > d} for any t, d ∈ R�0.

2. Any continuous distribution which is memoryless is an exponential one.

Proof of 1. : Let λ be the rate of X ’s distribution. Then we derive:

Pr{X > t + d | X > t} =
Pr{X > t+d ∩ X > t}

Pr{X > t} =
Pr{X > t+d}
Pr{X > t}

=
e−λ·(t+d)

e−λ·t = e−λ·d = Pr{X > d}.

Proof of 2. : by contradiction, using the total law of probability.
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Closure under minimum

For independent, exponentially distributed random variables X and Y with

rates λ, µ ∈ R>0, r.v. min(X, Y ) is exponentially distributed with rate λ+µ, i.e.,:

Pr{min(X, Y ) � t} = 1 − e−(λ+µ)·t for all t ∈ R�0
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{min(X, Y ) � t} = PrX,Y {(x, y) ∈ R
2
�0 | min(x, y) � t}

=

Z ∞

0

„Z ∞

0

Imin(x,y)�t(x, y) · λe
−λx · µe

−µy
dy

«
dx

=

Z t

0

Z ∞

x

λe−λx · µe−µy dy dx +

Z t

0

Z ∞

y

λe−λx · µe−µy dx dy

=

Z t

0

λe−λx · e−µx dx +

Z t

0

e−λy · µe−µy dy

=

Z t

0

λe
−(λ+µ)x

dx +

Z t

0

µe
−(λ+µ)y

dy

=

Z t

0

(λ+µ) · e
−(λ+µ)z

dz = 1 − e
−(λ+µ)t
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Winning the race with two competitors

For independent, exponentially distributed random variables

X and Y with rates λ, µ ∈ R>0, it holds:

Pr{X � Y } =
λ

λ+µ
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Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{X � Y } = PrX,Y {(x, y) ∈ R
2
�0 | x � y}

=

Z ∞

0

µe
−µy

„Z y

0

λe
−λx

dx

«
dy

=

Z ∞

0

µe−µy
“
1 − e−λy

”
dy

= 1 −
Z ∞

0

µe−µy·e−λy dy = 1 −
Z ∞

0

µe−(µ+λ)y dy

= 1 − µ

µ+λ
·

Z ∞

0

(µ+λ)e−(µ+λ)y dy| {z }
=1

= 1 − µ

µ+λ
=

λ

µ+λ
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Winning the race with many competitors

For independent, exponentially distributed random variables

X1, X2, . . . , Xn with rates λ1, . . . , λn ∈ R>0, it holds:

Pr{Xi = min(X1, . . . , Xn)} =
λiPn

j=1 λj
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Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S,P, r, L) where:

• S is a countable (today: finite) set of states

• P : S × S → [0, 1], a stochastic matrix

– P(s, s′) is one-step probability of going from state s to state s′

– s is called absorbing iff P(s, s) = 1

• r : S → R>0, the exit-rate function

– r(s) is the rate of exponential distribution of residence time in state s

⇒ a CTMC is a Kripke structure with random state residence times
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Continuous-time Markov chain

a CTMC (S, P, r, L) is a DTMC plus an exit-rate function r : S → R>0
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A classical (though equivalent) perspective

a CTMC is a triple (S, R, L) with R(s, s′) = P(s, s′)·r(s)

st u

2

v

25
2

2

25
2

100

2

c© JPK 22



CTMC semantics: example
• Transition s → s′ := r.v. Xs,s′ with rate R(s, s′)

• Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2
� Xs0,s1

∩ Xs0,s2
� Xs0,s3

}
=

R(s0, s2)

R(s0, s1) + R(s0, s2) + R(s0, s3)
=

R(s0, s2)

r(s0)

• Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1, Xs0,s2, Xs0,s3) � t}
=

1 − e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1 − e−r(s0)·t
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CTMC semantics

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
r(s)

·
(
1 − e−r(s)·t

)

• The probability to take some outgoing transition from s in [0, t] is:

∫ t

0

r(s)·e−r(s)·x dx = 1 − e−r(s)·t
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Enzyme-catalysed substrate conversion
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Stochastic chemical kinetics

• Types of reaction described by stochiometric equations:

E + S
k1�
k2

ES
k3−−→E + P

• N different types of molecules that randomly collide

where state X(t) = (x1, . . . , xN) with xi = # molecules of sort i

• Reaction probability within infinitesimal interval [t, t+∆):

αm(�x) · ∆ = Pr{reaction m in [t, t+∆) | X(t) = �x}
where αm(�x) = km · # possible combinations of reactant molecules in �x

• Process is a continuous-time Markov chain
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Enzyme-catalyzed substrate conversion as a CTMC
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States: init goal
enzymes 2 2
substrates 4 0
complex 0 0
products 0 4

Transitions: E + S
1�
1

C 0.001−−−−→E + P

e.g., (xE, xS, xC, xP )
0.001·xC−−−−−−−→ (xE + 1, xS, xC − 1, xP + 1) for xC > 0
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CTMCs are omnipresent!

• Markovian queueing networks (Kleinrock 1975)

• Stochastic Petri nets (Molloy 1977)

• Stochastic activity networks (Meyer & Sanders 1985)

• Stochastic process algebra (Herzog et al., Hillston 1993)

• Probabilistic input/output automata (Smolka et al. 1994)

• Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Time-abstract evolution of a CTMC
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On the long run
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Transient distribution of a CTMC
Let X(t) denote the state of a CTMC at time t ∈ R�0.

Probability to be in state s at time t:

ps(t) = Pr{X(t) = s }
=

∑
s′∈S

Pr{X(0) = s′ } · Pr{X(t) = s | X(0) = s′ }

Transient probability vector p(t) = (ps1(t), . . . , psk
(t)) satisfies:

p′(t) = p(t) · (R − r) given p(0)

where r is the diagonal matrix of vector r.
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A triple modular redundant system

• 3 processors and a single voter:

– processors run same program; voter takes a majority vote
– each component (processor and voter) is failure-prone
– there is a single repairman for repairing processors and voter

Proc 1

Proc 2

Proc 3

input output

vote

vote

vote
Voter

• Modelling assumptions:

– if voter fails, entire system goes down

– after voter-repair, system starts “as new”

– state = (#processors, #voters)

c© JPK 33



Modelling a TMR system as a CTMC

3,1

0,0

0,1

2,1

1,1

ν

2λ

up3

down
δ

up2

up1up0

3λ

µ

ν
ν

µ

ν
µ

λ

• processor failure rate is λ fph;
its repair rate is µ rph

• voter failure rate is ν fph;
its repair rate is δ rph

• rate matrix: e.g., R((3, 1), (2, 1)) = 3λ

• exit rates: e.g., r((3, 1)) = 3λ+ν

• probability matrix: e.g.,

P((3, 1), (2, 1)) =
3λ

3λ+ν
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Transient probabilities

ps3,1(t) for t � 10 hours p(t) for t � 10 hours (log-scale)

λ = 0.01 fph, ν = 0.001 fph

µ = 1 rph and δ = 0.2 rph

( c© book by B.R. Haverkort)
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Steady-state distribution of a CTMC

For any finite and strongly connected CTMC it holds:

ps = lim
t→∞ ps(t) ⇔ lim

t→∞ p′s(t) = 0 ⇔ lim
t→∞ ps(t) · (R−r) = 0

Steady-state probability vector p = (ps1, . . . , psk
) satisfies:

p · (R−r) = 0 where
∑

s∈S ps = 1
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Steady-state distribution

s s3,1 s2,1 s1,1 s0,1 s0,0

p(s) 9.655·10−1 2.893·10−2 5.781·10−4 5.775·10−6 4.975·10−3

The probability of � two processors and the voter are up

once the CTMC has reached an equilibrium is 0.9655+0.02893 ≈ 0.993

λ = 0.01 fph, ν = 0.001 fph

µ = 1 rph and δ = 0.2 rph
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Computing transient probabilities

• Transient probability vector p(t) = (ps1(t), . . . , psk
(t)) satisfies:

p′(t) = p(t) · (R−r) given p(0)

• Solution using Taylor-Maclaurin expansion:

p(t) = p(0)·e(R−r)·t = p(0) ·
∞∑

i=0

((R−r)·t)i

i!

• Main problems: infinite summation + numerical instability due to

– non-sparsity of (R−r)i and presence positive and negative entries
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Uniform CTMCs

• A CTMC is uniform if r(s) = r for all s for some r ∈ R>0

• Any CTMC can be changed into a weak bisimilar uniform CTMC

• Let r ∈ R>0 such that r � maxs∈S r(s)

– 1
r is at most the shortest mean residence time in CTMC C

• Then u(r, C) = (S,P, r, L) with r(s) = r for any s, and:

P(s, s′) =
r(s)
r

·P(s, s′) if s′ �= s and P(s, s) =
r(s)
r

·P(s, s)+1−r(s)
r
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Uniformization
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all state transitions in CTMC u(r, C) occur at an average pace of r per time unit
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Computing transient probabilities

• Now: p(t) = p(0)·er·(P−I)t = p(0)·e−rt·er·t·P =
∞∑

i=0

e−r·t(r·t)i

i!︸ ︷︷ ︸
Poisson prob.

·Pi

• Summation can be truncated a priori for a given error bound ε > 0:

‚‚‚‚‚
∞X

i=0

e
−rt(rt)i

i!
·p(i) −

kεX
i=0

e
−rt(rt)i

i!
·p(i)

‚‚‚‚‚ =

‚‚‚‚‚‚
∞X

i=kε+1

e
−rt(rt)i

i!
·p(i)

‚‚‚‚‚‚

• Choose kε minimal s.t.:
∞∑

i=kε+1

e−rt(rt)
i

i!
= 1 −

kε∑
i=0

e−rt(rt)
i

i!
� ε
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Transient probabilities: example

P =
[

0 1
1 0

]
, r =

[
3
2

]
and P3 =

[
0 1
2
3

1
3

]

Let initial distribution p(0) = (1, 0), and time bound t=1.

Then:

p(0)·
∞X

i=0

e−33
i

i!
·Pi

= (1, 0)·e−3 1
0!·

»
0 1

1 0

–
+ (1, 0)·e−3 3

1!·
»

0 1
2
3

1
3

–

+ (1, 0)·e−3 9
2!·

»
0 1
2
3

1
3

–2

+ . . . . . .

≈ (0.404043, 0.595957)
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CTMC paths

• An infinite path σ in a CTMC C = (S,P, r, L) is of the form:

σ = s0
t0−−→ s1

t1−−→ s2
t2−−→ s3 . . . . . .

with si is a state in S, ti ∈ R>0 is a duration, and P(si, si+1) > 0.

• A Borel space on infinite paths exists (cylinder construction)

– reachability, timed reachability, and ω-regular properties are measurable

• A path is Zeno if
∑

i ti is converging

• Theorem: the probability of the set of Zeno paths in any CTMC is 0
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Summarizing

• Negative exponential distribution

– suitable for many practical phenomena
– nice mathematical properties

• Continuous-time Markov chains

– Kripke structures with exponential state residence times
– used in many different fields, e.g., performance, biology, . . .

• Performance measures

– transient probability vector: where is a CTMC at time t?
– steady-state probability vector: where is a CTMC on the long run?
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