Model Checking Continuous-Time Markov Chains

Joost-Pieter Katoen

Software Modeling and Verification Group

RWTH Aachen University

associated to University of Twente, Formal Methods and Tools

UNIVERSITEIT TWENTE.

Lecture at Quantitative Model Checking School, March 4, 2010

Content of this lecture

- Introduction
 - motivation, DTMCs, continuous random variables
- Negative exponential distribution
 - definition, usage, properties
- Continuous-time Markov chains
 - definition, semantics, examples
- Performance measures
 - transient and steady-state probabilities, uniformization

Content of this lecture

- \Rightarrow Introduction
 - motivation, DTMCs, continuous random variables
 - Negative exponential distribution
 - definition, usage, properties
 - Continuous-time Markov chains
 - definition, semantics, examples
 - Performance measures
 - transient and steady-state probabilities, uniformization

- When analysing system performance and dependability
 - to quantify arrivals, waiting times, time between failure, QoS, ...
- When modelling uncertainty in the environment
 - to quantify imprecisions in system inputs
 - to quantify unpredictable delays, express soft deadlines, ...
- When building protocols for networked embedded systems
 - randomized algorithms
- When problems are undecidable deterministically
 - reachability of channel systems, ...

What is probabilistic model checking?

Probabilistic models

	Nondeterminism	Nondeterminism yes	
	no		
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)	
Continuous time	CTMC	CTMDP	

Other models: probabilistic variants of (priced) timed automata, or hybrid automata

Discrete-time Markov chain

a DTMC is a triple (S, \mathbf{P}, L) with state space S and state-labelling Land \mathbf{P} a stochastic matrix with $\mathbf{P}(s, s') =$ one-step probability to jump from s to s'

Time in DTMCs

- Time in a DTMC proceeds in discrete steps
- Two possible interpretations
 - accurate model of (discrete) time units
 - * e.g., clock ticks in model of an embedded device
 - time-abstract
 - * no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using negative exponential distributions

Continuous random variables

- X is a random variable (r.v., for short)
 - on a sample space with probability measure \Pr
 - assume the set of possible values that X may take is dense
- X is continuously distributed if there exists a function f(x) such that:

$$\Pr{X \leq d} = \int_{-\infty}^{d} f(x) dx$$
 for each real number d

where *f* satisfies: $f(x) \ge 0$ for all *x* and $\int_{-\infty}^{\infty} f(x) dx = 1$

- $F_X(d) = \Pr\{X \leq d\}$ is the *(cumulative)* probability distribution function
- f(x) is the probability density function

Content of this lecture

- Introduction
 - motivation, DTMCs, continuous random variables
- \Rightarrow Negative exponential distribution
 - definition, usage, properties
 - Continuous-time Markov chains
 - definition, semantics, examples
 - Performance measures
 - transient and steady-state probabilities, uniformization

Negative exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of Y:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} \, dx = \left[-e^{-\lambda \cdot x}\right]_0^d = 1 - e^{-\lambda \cdot d}$$

- expectation $E[Y] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
- variance $Var[Y] = \frac{1}{\lambda^2}$

the rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Exponential pdf and cdf

the higher $\lambda,$ the faster the cdf approaches 1

Why exponential distributions?

- Are *adequate* for many real-life phenomena
 - the time until a radioactive particle decays
 - the time between successive car accidents
 - inter-arrival times of jobs, telephone calls in a fixed interval
- Are the continuous counterpart of geometric distribution
- Heavily used in physics, performance, and reliability analysis
- Can *approximate* general distributions arbitrarily closely
- Yield a *maximal entropy* if only the mean is known

Memoryless property

1. For any random variable X with an exponential distribution:

$$\Pr\{X > t + d \mid X > t\} = \Pr\{X > d\} \text{ for any } t, d \in \mathbb{R}_{\geq 0}.$$

2. Any continuous distribution which is memoryless is an exponential one.

Proof of 1. : Let λ be the rate of *X*'s distribution. Then we derive:

$$\Pr\{X > t + d \mid X > t\} = \frac{\Pr\{X > t + d \cap X > t\}}{\Pr\{X > t\}} = \frac{\Pr\{X > t + d\}}{\Pr\{X > t\}}$$
$$= \frac{e^{-\lambda \cdot (t+d)}}{e^{-\lambda \cdot t}} = e^{-\lambda \cdot d} = \Pr\{X > d\}.$$

Proof of 2. : by contradiction, using the total law of probability.

Closure under minimum

For independent, exponentially distributed random variables X and Y with

rates $\lambda, \mu \in \mathbb{R}_{>0}$, r.v. $\min(X, Y)$ is exponentially distributed with rate $\lambda + \mu$, i.e.,:

$$\Pr\{\min(X, Y) \leq t\} = 1 - e^{-(\lambda + \mu) \cdot t} \text{ for all } t \in \mathbb{R}_{\geq 0}$$

Proof

Let λ (μ) be the rate of X's (Y's) distribution. Then we derive:

$$\begin{aligned} \Pr\{\min(X,Y) \leqslant t\} &= \Pr_{X,Y}\{(x,y) \in \mathbb{R}^2_{\geq 0} \mid \min(x,y) \leqslant t\} \\ &= \int_0^\infty \left(\int_0^\infty \mathbf{I}_{\min(x,y) \leqslant t}(x,y) \cdot \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \boldsymbol{\mu} e^{-\boldsymbol{\mu} y} \, dy \right) \, dx \\ &= \int_0^t \int_x^\infty \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \boldsymbol{\mu} e^{-\boldsymbol{\mu} y} \, dy \, dx + \int_0^t \int_y^\infty \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot \boldsymbol{\mu} e^{-\boldsymbol{\mu} y} \, dx \, dy \\ &= \int_0^t \boldsymbol{\lambda} e^{-\boldsymbol{\lambda} x} \cdot e^{-\boldsymbol{\mu} x} \, dx + \int_0^t e^{-\boldsymbol{\lambda} y} \cdot \boldsymbol{\mu} e^{-\boldsymbol{\mu} y} \, dy \\ &= \int_0^t \boldsymbol{\lambda} e^{-(\boldsymbol{\lambda} + \boldsymbol{\mu}) x} \, dx + \int_0^t \boldsymbol{\mu} e^{-(\boldsymbol{\lambda} + \boldsymbol{\mu}) y} \, dy \\ &= \int_0^t (\boldsymbol{\lambda} + \boldsymbol{\mu}) \cdot e^{-(\boldsymbol{\lambda} + \boldsymbol{\mu}) z} \, dz \, = \, 1 - e^{-(\boldsymbol{\lambda} + \boldsymbol{\mu}) t} \end{aligned}$$

Winning the race with two competitors

For independent, exponentially distributed random variables X and Y with rates $\lambda, \mu \in \mathbb{R}_{>0}$, it holds: $\Pr\{X \leqslant Y\} = \frac{\lambda}{\lambda + \mu}$

Proof

Let λ (μ) be the rate of X's (Y's) distribution. Then we derive:

$$\begin{aligned} \Pr\{X \leqslant Y\} &= \Pr_{X,Y}\{(x,y) \in \mathbb{R}^2_{\geq 0} \mid x \leqslant y\} \\ &= \int_0^\infty \mu e^{-\mu y} \left(\int_0^y \lambda e^{-\lambda x} \, dx \right) \, dy \\ &= \int_0^\infty \mu e^{-\mu y} \left(1 - e^{-\lambda y} \right) \, dy \end{aligned} \\ &= 1 - \int_0^\infty \mu e^{-\mu y} \cdot e^{-\lambda y} \, dy = 1 - \int_0^\infty \mu e^{-(\mu + \lambda)y} \, dy \\ &= 1 - \frac{\mu}{\mu + \lambda} \cdot \underbrace{\int_0^\infty (\mu + \lambda) e^{-(\mu + \lambda)y} \, dy}_{=1} \\ &= 1 - \frac{\mu}{\mu + \lambda} = \frac{\lambda}{\mu + \lambda} \end{aligned}$$

Winning the race with many competitors

For independent, exponentially distributed random variables X_1, X_2, \ldots, X_n with rates $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_{>0}$, it holds: $\Pr\{X_i = \min(X_1, \ldots, X_n)\} = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$

Content of this lecture

- Introduction
 - motivation, DTMCs, continuous random variables
- Negative exponential distribution
 - definition, usage, properties
- \Rightarrow Continuous-time Markov chains
 - definition, semantics, examples
 - Performance measures
 - transient and steady-state probabilities, uniformization

Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S, \mathbf{P}, r, L) where:

- S is a countable (today: finite) set of states
- $\mathbf{P}: S \times S \rightarrow [0,1]$, a stochastic matrix
 - $\mathbf{P}(s, s')$ is one-step probability of going from state s to state s'
 - s is called *absorbing* iff $\mathbf{P}(s, s) = 1$
- $r: S \to \mathbb{R}_{>0}$, the *exit-rate function*
 - r(s) is the rate of exponential distribution of residence time in state s

 \Rightarrow a CTMC is a Kripke structure with random state residence times

Continuous-time Markov chain

a CTMC (S, \mathbf{P}, r, L) is a DTMC plus an exit-rate function $r: S \to \mathbb{R}_{>0}$

A classical (though equivalent) perspective

a CTMC is a triple (S, \mathbf{R}, L) with $\mathbf{R}(s, s') = \mathbf{P}(s, s') \cdot r(s)$

CTMC semantics: example

- Transition $s \to s' := r.v. X_{s,s'}$ with rate $\mathbf{R}(s, s')$
- Probability to go from state s_0 to, say, state s_2 is:

$$\Pr\{X_{s_0,s_2} \leqslant X_{s_0,s_1} \cap X_{s_0,s_2} \leqslant X_{s_0,s_3}\} = \frac{\mathbf{R}(s_0,s_2)}{\mathbf{R}(s_0,s_1) + \mathbf{R}(s_0,s_2) + \mathbf{R}(s_0,s_3)} = \frac{\mathbf{R}(s_0,s_2)}{r(s_0)}$$

• Probability of staying at most t time in s_0 is:

$$\Pr\{\min(X_{s_0,s_1}, X_{s_0,s_2}, X_{s_0,s_3}) \leq t\}$$

$$=$$

$$1 - e^{-(\mathbf{R}(s_0,s_1) + \mathbf{R}(s_0,s_2) + \mathbf{R}(s_0,s_3)) \cdot t} = 1 - e^{-r(s_0) \cdot t}$$

CTMC semantics

• The probability that transition $s \rightarrow s'$ is *enabled* in [0, t]:

$$1 - e^{-\mathbf{R}(s,s') \cdot t}$$

• The probability to *move* from non-absorbing s to s' in [0, t] is:

$$\frac{\mathbf{R}(s,s')}{r(s)} \cdot \left(1 - e^{-r(s) \cdot t}\right)$$

• The probability to *take some* outgoing transition from s in [0, t] is:

$$\int_0^t r(s) \cdot e^{-r(s) \cdot x} \, dx = 1 - e^{-r(s) \cdot t}$$

Enzyme-catalysed substrate conversion

Stochastic chemical kinetics

• Types of reaction described by stochiometric equations:

$$E + S \xrightarrow[k_2]{k_1} ES \xrightarrow{k_3} E + P$$

- N different types of molecules that randomly collide
 where state X(t) = (x₁,..., x_N) with x_i = # molecules of sort i
- Reaction probability within infinitesimal interval $[t, t+\Delta)$:

 $\alpha_m(\vec{x}) \cdot \Delta = \Pr\{\text{reaction } m \text{ in } [t, t+\Delta) \mid X(t) = \vec{x}\}$

where $\alpha_m(\vec{x}) = \mathbf{k_m} \cdot \#$ possible combinations of reactant molecules in \vec{x}

• Process is a continuous-time Markov chain

Enzyme-catalyzed substrate conversion as a CTMC

States:	<i>init</i>	goal
enzymes	2	2
substrates	4	0
complex	0	0
products	0	$0\\4$

Transitions:
$$E + S \stackrel{1}{\rightleftharpoons} C \stackrel{0.001}{\longrightarrow} E + P$$

e.g., $(x_E, x_S, x_C, x_P) \stackrel{0.001 \cdot x_C}{\longrightarrow} (x_E + 1, x_S, x_C - 1, x_P + 1)$ for $x_C > 0$

CTMCs are omnipresent!

 Markovian queueing networks 	(Kleinrock 1975)	
 Stochastic Petri nets 	(Molloy <mark>1977</mark>)	
 Stochastic activity networks 	(Meyer & Sanders 1985)	
 Stochastic process algebra 	(Herzog <i>et al.</i> , Hillston 1993)	
 Probabilistic input/output automata 	(Smolka <i>et al.</i> 1994)	
 Calculi for biological systems 	(Priami <i>et al.</i> , Cardelli 2002)	

CTMCs are one of the most prominent models in performance analysis

Content of this lecture

- Introduction
 - motivation, DTMCs, continuous random variables
- Negative exponential distribution
 - definition, usage, properties
- Continuous-time Markov chains
 - definition, semantics, examples
- \Rightarrow Performance measures
 - transient and steady-state probabilities, uniformization

Time-abstract evolution of a CTMC

On the long run

Transient distribution of a CTMC

Let X(t) denote the state of a CTMC at time $t \in \mathbb{R}_{\geq 0}$.

Probability to be in state s at time t:

$$p_{s}(t) = \Pr\{X(t) = s\}$$

= $\sum_{s' \in S} \Pr\{X(0) = s'\} \cdot \Pr\{X(t) = s \mid X(0) = s'\}$

Transient probability vector $\underline{p}(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r}) \quad \text{given} \quad \underline{p}(0)$$

where \mathbf{r} is the diagonal matrix of vector \underline{r} .

A triple modular redundant system

- 3 processors and a single voter:
 - processors run same program; voter takes a majority vote
 - each component (processor and voter) is failure-prone
 - there is a single repairman for repairing processors and voter

- Modelling assumptions:
 - if voter fails, entire system goes down
 - after voter-repair, system starts "as new"
 - state = (#processors, #voters)

Modelling a TMR system as a CTMC

- up_2 up_3 3λ 2,1 μ 3,1 \mathcal{V} /IN δ ν 2λ down 0.0 μ \mathcal{V} \mathcal{V} μ 0,1 1,1 λ up_0 up_1
- processor failure rate is λ fph; its repair rate is μ rph
- voter failure rate is ν fph;
 its repair rate is δ rph
- rate matrix: e.g., $\mathbf{R}((3,1),(2,1)) = 3\lambda$
- exit rates: e.g., $r((3,1)) = 3\lambda + \nu$
- probability matrix: e.g.,

$$\mathbf{P}((3,1),(2,1)) = \frac{3\lambda}{3\lambda + \nu}$$

Transient probabilities

 $p_{s_{3,1}}(t)$ for $t\leqslant$ 10 hours

p(t) for $t\leqslant 10$ hours (log-scale)

 $\lambda=0.01$ fph, $\nu=0.001$ fph

 $\mu=1$ rph and $\delta=0.2$ rph

(© book by B.R. Haverkort)

Steady-state distribution of a CTMC

For any finite and strongly connected CTMC it holds:

$$p_s = \lim_{t \to \infty} p_s(t) \quad \Leftrightarrow \quad \lim_{t \to \infty} p'_s(t) = 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} p_s(t) \cdot (\mathbf{R} - \mathbf{r}) = 0$$

Steady-state probability vector $\underline{p} = (p_{s_1}, \dots, p_{s_k})$ satisfies:

 $\underline{p} \cdot (\mathbf{R} - \mathbf{r}) = 0$ where $\sum_{s \in S} p_s = 1$

Steady-state distribution

s	$s_{3,1}$	$s_{2,1}$	$s_{1,1}$	$s_{0,1}$	$s_{0,0}$
	1			6	
p(s)	$9.655 \cdot 10^{-1}$	$2.893 \cdot 10^{-2}$	$5.781 \cdot 10^{-4}$	$5.775 \cdot 10^{-6}$	$4.975 \cdot 10^{-3}$

The probability of \geq two processors and the voter are up

once the CTMC has reached an equilibrium is $0.9655+0.02893 \approx 0.993$

 $\lambda = 0.01$ fph, $\nu = 0.001$ fph $\mu = 1$ rph and $\delta = 0.2$ rph

Computing transient probabilities

• Transient probability vector $\underline{p}(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r}) \quad \text{given} \quad \underline{p}(0)$$

• Solution using Taylor-Maclaurin expansion:

$$\underline{p}(t) = \underline{p}(0) \cdot e^{(\mathbf{R} - \mathbf{r}) \cdot t} = \underline{p}(0) \cdot \sum_{i=0}^{\infty} \frac{((\mathbf{R} - \mathbf{r}) \cdot t)^i}{i!}$$

- Main problems: infinite summation + numerical instability due to
 - non-sparsity of $(\mathbf{R}-\mathbf{r})^i$ and presence positive and negative entries

Uniform CTMCs

- A CTMC is uniform if r(s) = r for all s for some $r \in \mathbb{R}_{>0}$
- Any CTMC can be changed into a weak bisimilar uniform CTMC
- Let $r \in \mathbb{R}_{>0}$ such that $r \ge \max_{s \in S} r(s)$

- $\frac{1}{r}$ is at most the shortest mean residence time in CTMC C

• Then $u(r, C) = (S, \overline{\mathbf{P}}, \overline{r}, L)$ with $\overline{r}(s) = r$ for any s, and:

$$\overline{\mathbf{P}}(s,s') = \frac{r(s)}{r} \cdot \mathbf{P}(s,s') \text{ if } s' \neq s \quad \text{and} \quad \overline{\mathbf{P}}(s,s) = \frac{r(s)}{r} \cdot \mathbf{P}(s,s) + 1 - \frac{r(s)}{r} \cdot \mathbf{P}(s,$$

Uniformization

all state transitions in CTMC u(r, C) occur at an average pace of r per time unit

Computing transient probabilities

• Now:
$$\underline{p}(t) = \underline{p}(0) \cdot e^{r \cdot (\overline{\mathbf{P}} - \mathbf{I})t} = \underline{p}(0) \cdot e^{-rt} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} = \sum_{i=0}^{\infty} \underbrace{e^{-r \cdot t} \frac{(r \cdot t)^i}{i!}}_{\text{Poisson prob.}} \cdot \overline{\mathbf{P}}^i$$

• Summation can be truncated *a priori* for a given error bound $\varepsilon > 0$:

$$\left\|\sum_{i=0}^{\infty} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i) - \sum_{i=0}^{k_{\varepsilon}} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i)\right\| = \left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-rt} \frac{(rt)^{i}}{i!} \cdot \underline{p}(i)\right\|$$

• Choose
$$k_{\varepsilon}$$
 minimal s.t.: $\sum_{i=k_{\varepsilon+1}}^{\infty} e^{-rt} \frac{(rt)^i}{i!} = 1 - \sum_{i=0}^{k_{\varepsilon}} e^{-rt} \frac{(rt)^i}{i!} \leqslant \varepsilon$

Transient probabilities: example

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \underline{r} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \text{ and } \overline{\mathbf{P}}_3 = \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Let initial distribution $\underline{p}(0) = (1, 0)$, and time bound t=1.

Then:

$$\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-3} \frac{3^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}$$

$$= (1,0) \cdot e^{-3} \frac{1}{0!} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + (1,0) \cdot e^{-3} \frac{3}{1!} \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$+ (1,0) \cdot e^{-3} \frac{9}{2!} \cdot \begin{bmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}^{2} + \dots$$

 $\approx (0.404043, 0.595957)$

CTMC paths

• An infinite path σ in a CTMC $C = (S, \mathbf{P}, r, L)$ is of the form:

$$\sigma = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} s_3 \dots$$

with s_i is a state in S, $t_i \in \mathbb{R}_{>0}$ is a duration, and $\mathbf{P}(s_i, s_{i+1}) > 0$.

- A Borel space on infinite paths exists (cylinder construction)
 - reachability, timed reachability, and ω -regular properties are measurable
- A path is Zeno if $\sum_i t_i$ is converging
- Theorem: the probability of the set of Zeno paths in any CTMC is 0

Summarizing

- Negative exponential distribution
 - suitable for many practical phenomena
 - nice mathematical properties
- Continuous-time Markov chains
 - Kripke structures with exponential state residence times
 - used in many different fields, e.g., performance, biology, ...
- Performance measures
 - transient probability vector: where is a CTMC at time *t*?
 - steady-state probability vector: where is a CTMC on the long run?