Real-time Model Checking — Priced timed automata —

- Friceu timeu automata -

Nicolas MARKEY

Lav. Spécification & Vérification CNRS & ENS Cachan – France

March 3, 2010

Timed automata are (rather) well understood – Can we go further?

Timed automata are (rather) well understood - Can we go further?

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

Timed automata are (rather) well understood – Can we go further?

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

Timed automata are (rather) well understood – Can we go further?

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

 P_2

Timed automata are (rather) well understood – Can we go further?

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

< ≣⇒

Timed automata are (rather) well understood – Can we go further?

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

 T_5

 T_6

 hybrid automata: timed automata augmented with variables whose derivative is not constant.

 \sim examples: leaking gas burner, water-level monitor, ...

$$\begin{array}{c} x \leq 1 \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 1 \end{array} \xrightarrow{ x \leq 1, x := 0 } \\ \begin{array}{c} true \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 0 \end{array}$$

Theorem

Reachability is undecidable (even for timed automata with one stopwatch).

Refs: [1] Henzinger, Kopke, Puri, Varaiya. What's Decidable about Hybrid Automata? (1995).

 hybrid automata: timed automata augmented with variables whose derivative is not constant.

 \sim examples: leaking gas burner, water-level monitor, ...

$$\begin{array}{c} \begin{array}{c} x \leq 1 \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 1 \end{array} \end{array} \xrightarrow{ x \leq 1, x := 0 } \begin{array}{c} true \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 0 \end{array}$$

• timed automata with observers: similar to hybrid automata, but the behavior only depends on clock variables.

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

Outline of the talk

Introduction

2 Timed automata with observers

3 Resource-optimization problems

- Optimal reachability
- Weighted temporal logics
- Optimal strategies

Outline of the talk

Introduction

2 Timed automata with observers

Resource-optimization problems
 Optimal reachability
 Weighted temporal logics
 Optimal strategies

4 Resource-management problems

5 Conclusions and perspectives

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

< E> < E>

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

★ E > < E >

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

★ E > < E >

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

★ E ► < E ►</p>

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

< E> < E>

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

★ E > < E >

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

< E> < E>

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

< E> < E>

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

★ E > < E >

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

< E> < E>

Outline of the talk

Introduction

2 Timed automata with observers

3 Resource-optimization problems

- Optimal reachability
- Weighted temporal logics
- Optimal strategies

Outline of the talk

Introduction

2 Timed automata with observers

Resource-optimization problems Optimal reachabilility

- Weighted temporal logics
- Optimal strategies

4 Resource-management problems

5 Conclusions and perspectives

Minimal cost for reaching ©:

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006). 🔌 📃 🕨 🗸 🚍 🕨

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Proof.

• The region abstraction is not fine enough:

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006). 🔫 🚊 🕨 📢 🚍 🕨

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Proof.

• The idea is: "take transitions close to integer dates";

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006). 🔌 📃 🕨 🗸 🚍 🕨

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Proof.

- The idea is: "take transitions *close to integer dates*";
- Corner-point abstraction: only consider corners of regions:

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Proof.

- The idea is: "take transitions close to integer dates";
- Corner-point abstraction: only consider corners of regions:

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).
Optimal reachability

Theorem

Optimal reachability in priced timed automata is PSPACE-complete.

Proof.

- The idea is: "take transitions close to integer dates";
- Corner-point abstraction: only consider corners of regions:

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).

Outline of the talk

Introduction

2 Timed automata with observers

Resource-optimization problems
 Optimal reachabilility
 Weighted temporal logics

- Optimal strategies
- 4 Resource-management problems

Example

Decorate temporal modalities with constraints on cost:

Example

Decorate temporal modalities with constraints on cost:

$$\longrightarrow \bigcirc \overset{1.4}{\longrightarrow} \bigcirc \overset{3.4}{\longrightarrow} \bigcirc \overset{0.2}{\longrightarrow} \bigcirc \overset{1.3}{\longrightarrow} \bigcirc \overset{1.2}{\longrightarrow} \bigcirc \cdots \models \bigcirc \mathsf{U}_{=5} \bigcirc$$

Example

Decorate temporal modalities with constraints on cost:

 $\rightarrow \bigcirc \overset{1.4}{\longrightarrow} \bigcirc \overset{0.2}{\longrightarrow} \bigcirc \overset{1.3}{\longrightarrow} \bigcirc \overset{1.2}{\longrightarrow} \bigcirc \cdots \models \bigcirc \mathsf{U}_{=5} \bigcirc$

Example

Decorate temporal modalities with constraints on cost:

$$\longrightarrow \bigcirc \overset{1.4}{\longrightarrow} \bigcirc \overset{3.4}{\longrightarrow} \bigcirc \overset{0.2}{\longrightarrow} \bigcirc \overset{1.3}{\longrightarrow} \bigcirc \overset{1.2}{\longrightarrow} \bigcirc \qquad \models \bigcirc U_{=5} \bigcirc$$

Example

• $G(\text{failure} \Rightarrow F_{\leq 250} \text{ repaired})$

Example

Decorate temporal modalities with constraints on cost:

$$\longrightarrow \bigcirc \stackrel{1.4}{\longrightarrow} \bigcirc \stackrel{3.4}{\longrightarrow} \bigcirc \stackrel{0.2}{\longrightarrow} \bigcirc \stackrel{1.3}{\longrightarrow} \bigcirc \stackrel{1.2}{\longrightarrow} \bigcirc \qquad \models \bigcirc U_{=5} \bigcirc$$

Example

- $G(failure \Rightarrow F_{\leq 250} repaired)$
- $AG(\texttt{failure} \Rightarrow EF_{\texttt{time} \leq 5}(\texttt{repair} \land AF_{\texttt{cost} \leq 150} \texttt{running}))$

Theorem

WMTL model-checking is undecidable.

Theorem

WMTL model-checking is undecidable.

Proof.

• encoding of a two-counter machine;

Theorem

WMTL model-checking is undecidable.

- encoding of a two-counter machine;
- Holds even for one clock and one cost variable.

Theorem

WMTL model-checking is undecidable.

Proof.

- encoding of a two-counter machine;
- Holds even for one clock and one cost variable.

Theorem

WCTL model-checking is undecidable.

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
[2] Brihaye, Bruyère, Raskin. Model-Checking for Weighted Timed Automata (2004).

Theorem

WMTL model-checking is undecidable.

Proof.

- encoding of a two-counter machine;
- Holds even for one clock and one cost variable.

Theorem

WCTL model-checking is undecidable.

Proof.

• encoding of a two-counter machine;

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
 [2] Brihaye, Bruyère, Raskin. Model-Checking for Weighted Timed Automata (2004).

< ⊒ > < ⊒ >

Theorem

WMTL model-checking is undecidable.

Proof.

- encoding of a two-counter machine;
- Holds even for one clock and one cost variable.

Theorem

WCTL model-checking is undecidable.

Proof.

- encoding of a two-counter machine;
- requires three clocks.

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
 [2] Brihaye, Bruyère, Raskin. Model-Checking for Weighted Timed Automata (2004).

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

Proof.

• region-based algorithm;

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

- region-based algorithm;
- but region are not fine enough:

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

- region-based algorithm;
- but region are not fine enough:

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

- region-based algorithm;
- but region are not fine enough:

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

- region-based algorithm;
- but region are not fine enough:

Theorem

WCTL model-checking is **PSPACE-complete** on 1-clock weighted timed automata.

- region-based algorithm;
- but region are not fine enough:
- Refine regions: granularity $1/M^{|\varphi|}$ is sufficient.

Outline of the talk

Introduction

2 Timed automata with observers

3

Resource-optimization problems

- Optimal reachabililty
- Weighted temporal logics
- Optimal strategies
- 4 Resource-management problems

Weighted timed games

Example

Timed games can also be extended with weights:

Weighted timed games

Example

Timed games can also be extended with weights:

Weighted timed games

Example

Timed games can also be extended with weights:

- A strategy for a player indicates which (action or delay) transition to play;
- A strategy is winning if all its outcomes are.

Corollary

Regions are not sufficient for solving priced timed games.

Computing optimal winning strategies is undecidable

Theorem

Computing optimal strategies in priced timed games is undecidable.

Computing optimal winning strategies is undecidable

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

The proof relies on simple modules that will allow encoding a two-counter machine:

Computing optimal winning strategies is undecidable

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

The proof relies on simple modules that will allow encoding a two-counter machine:

• Adding the value of clock x to the cost:

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

The proof relies on simple modules that will allow encoding a two-counter machine:

- Adding the value of clock x to the cost:
- Adding 1 x to the cost:

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

- Checking that y = 2x:
- Dividing clock x by 2:

Theorem

Computing optimal strategies in priced timed games is undecidable.

Proof.

- encode counter c_1 as $x_1 = 2^{-c_1}$ and counter c_2 as $x_2 = 3^{-c_1}$;
- by cleverly juggling with clocks, we can achieve this encoding with three clocks.

x=1

x=0

 $\dot{p}=1$

Example

• Optimal strategies do not always exist:

Example

• Optimal strategies do not always exist:

• Optimal strategies may require memory:

b=1

x=1

x=0

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Proof.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Theorem

Turn-based 1-clock priced timed games always admit ε -optimal winning strategies, and such strategies can be computed.

Proof.

- The procedure terminates;
- There is a positive granularity for with the region abstraction is correct;
- The optimal cost functions are piecewise affine, continuous, decreasing functions. Their slopes are rates of the automaton.

Outline of the talk

Introduction

2 Timed automata with observers

Resource-optimization problems
Optimal reachability
Weighted temporal logics
Optimal strategies

5 Conclusions and perspectives

Example

In some cases, resources can both be consumed and regained.

The aim is then to keep the level of resources within given bounds.

Example

Three variants of the problem:

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.
- Iower bound with finite capacity: the aim is to keep the level of resources above a given lower bound, but with a finite capacity.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.
- Iower bound with finite capacity: the aim is to keep the level of resources above a given lower bound, but with a finite capacity.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.
- Iower bound with finite capacity: the aim is to keep the level of resources above a given lower bound, but with a finite capacity.

- Iower bound: the aim is to maintain the level of resources above a given bound.
- interval: the aim is to keep the level of resources within an interval.
- Iower bound with finite capacity: the aim is to keep the level of resources above a given lower bound, but with a finite capacity.

Results in the untimed case

Theorem

In the untimed case, the following results hold:

	existential problem	universal problem	games
Lower bound	$\in PTIME$	$\in PTIME$	$ \in UP \cap coUP \\ PTIME\text{-hard} $
Lower bound, finite capacity	$\in PTIME$	$\in PTIME$	$\in NP$ PTIME-hard
Interval	∈ PSPACE NP- <i>hard</i>	$\in PTIME$	EXPTIME-c.

Refs: [1] Bouyer, Fahrenberg, Larsen, M., Srba. Infinite Runs in Weighted Timed Automata with Energy Constraints (2008). 🗄 🕨 < 🚍 🕨

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

Proof.

• Corner-point abstraction:

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

Proof.

• Corner-point abstraction:

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

Proof.

• Corner-point abstraction: Only correct if no discrete costs!

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

Refs: [1] Bouyer, Fahrenberg, Larsen, M. Timed Automata with Observers under Energy Constraints (2010).

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

- Corner-point abstraction: Only correct if no discrete costs!
- In the presence of discrete costs:

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

- Corner-point abstraction: Only correct if no discrete costs!
- In the presence of discrete costs:
 - compute optimal final resource-level along a non-resetting path;

Theorem

In the 1-clock case, the existence of an infinite run with resource level above a given lower bound is decidable in EXPTIME.

- Corner-point abstraction: Only correct if no discrete costs!
- In the presence of discrete costs:
 - compute optimal final resource-level along a non-resetting path;
 - compose the resulting functions for general paths.

Theorem

In the 1-clock case, the existence of a strategy for maintaining the resource level within a given interval is undecidable.

Theorem

In the 1-clock case, the existence of a strategy for maintaining the resource level within a given interval is undecidable.

Proof.

• Encoding of a two-counter machine: both counters are stored in one cost, as $\ell = 5 - 2^{-c_1} \cdot 3^{-c_2}$.

Theorem

In the 1-clock case, the existence of a strategy for maintaining the resource level within a given interval is undecidable.

Proof.

- Encoding of a two-counter machine: both counters are stored in one cost, as $\ell = 5 2^{-c_1} \cdot 3^{-c_2}$.
- The following module is used to increment and decrement:

Refs: [1] Bouyer, Fahrenberg, Larsen, M., Srba. Infinite Runs in Weighted Timed Automata with Energy Constraints (2008). 🗄 🕨 🖛 🚍 🕨

Theorem

In the 1-clock case, the existence of a strategy for maintaining the resource level within a given interval is undecidable.

Proof.

- Encoding of a two-counter machine: both counters are stored in one cost, as $\ell = 5 2^{-c_1} \cdot 3^{-c_2}$.
- The following module is used to increment and decrement:

Refs: [1] Bouyer, Fahrenberg, Larsen, M., Srba. Infinite Runs in Weighted Timed Automata with Energy Constraints (2008). 🖻 🔖

Outline of the talk

Introduction

2 Timed automata with observers

Resource-optimization problems
Optimal reachabilility
Weighted temporal logics
Optimal strategies

4 Resource-management problems

Conclusions and perspectives

- Weighted timed automata are a powerful formalism for modeling resources:
 - expressive enough for many applications;
 - several problems remain decidable;
 - some algorithms can be made symbolic and are implemented in Uppaal CORA.

Conclusions and perspectives

- Weighted timed automata are a powerful formalism for modeling resources:
 - expressive enough for many applications;
 - several problems remain decidable;
 - some algorithms can be made symbolic and are implemented in Uppaal CORA.
- Many open problems:
 - energy constraints for automata with several clocks;
 - timed automata with observers having richer dynamics.

Conclusions and perspectives

- Weighted timed automata are a powerful formalism for modeling resources:
 - expressive enough for many applications;
 - several problems remain decidable;
 - some algorithms can be made symbolic and are implemented in Uppaal CORA.
- Many open problems:
 - energy constraints for automata with several clocks;
 - timed automata with observers having richer dynamics.

