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Reactive and embedded systems

•Reactive systems are systems that maintain a 
continuous interaction with their environment.

•Reactive systems :

• are non-terminating systems

• have to respect or enforce real-time properties

• have to cope with concurrency

• are often embedded into an complex, continuous 
and safety critical, environments.
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300 horses power
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French Guniea, june 4, 1996
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Reactive and embedded systems

• The specification that have to meet ES are very complex 
(e.g. environment=continuous system, concurrency, real-
time, ...)

• ES are difficult to test:

• the environment in which they are embedded does not 
preexist/is difficult to simulate (e.g.  rocket, medical 
equipment, ...);

• even when errors are found, their diagnostic is diffult, we 
may not be able to “replay” the erroneous behavior.
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Need for FM and verification

•... they are difficult to develp correctly !

•... they are often safety critical !

⇒ we should very them !
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Hybrid Automata
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Mixing discrete-continuous evolutions

• Finite state automata have shown useful to model the 
control of reactive systems

• Reactive systems often have non-trivial interactions with 
continuous environment in which they are embedded

• We need a model which is able to model the discrete 
evolution of the controller and the continuous evolution 
of the environment

• Hybrid automata extend finite automata with continuous 
variables whose behaviors are described using differential 
constraints.
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Our running example
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hybrid system that reaches a given set of states. As hybrid automata can be
very complex mathematical objects, restricted subclasses for which we have
automatic analysis methods have been introduced. In this introduction, we
focus on rectangular hybrid automata and show how they can be used to over-
approximate the behavior of more complex hybrid automata. We close the
chapter by referencing the literature to allow the reader into go deeper in this
flourishing research subject.

2 Hybrid Automata: A Model for Hybrid Systems

To illustrate the main notions about hybrid automata, we use a running ex-
ample throughout the chapter. The components of the running example are
depicted in Fig. 1. It shows a system composed of three devices: (i) a tank that
contains water and that can be heated using a gas burner, (ii) a gas burner
that can be turned on or turned off, and (iii) a thermometer that monitors the
temperature of the water inside the tank and periodically issues signals when
the temperature of the water in the tank is above or below certain thresholds.
Later, we will add to this system a controller that will observe the signals
issued by the thermometer and will issue orders to the gas burner in order to
maintain the temperature of the water within a given range.

Fig. 1. Our running example

We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the
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Our running example

• Three environment components plus a controller: 

• A tank containing water;

• A gas burner that can be turn on or off;

• A digital thermometer that monitor the temperature within the tank.

• We want to design a controller that will maintain the 
temperature in the tank within an interval of safe 
temperatures. 
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Continuous part

• Behavior of the temperature in the tank

• When the gas burner is OFF the temperature evolves according to 
x(t) = I e-Kt 

i.e. x. = -Kx

• When the gas burner is ON the temperature evolves according to
x(t) = I e-Kt + h ( 1-e-Kt )
i.e. x. = K(h-x)

Where I is the initial temperature of the water, K is a constant that depends on the 
nature of the tank (how much it conducts heat for example), h is a constant that 
depends on the power of the gas burner, and t models time.

• We will refer to ON and OFF as modes of the tank evolution.

• Note that those rules are valid only when the temperature of the water 
is less than 100° celcius.
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Fragment of the evolution of the temperature

An introduction to hybrid automta 3

temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Clearly the evolution of the temperature is not purely continuous. It 
depends on the mode ON and OFF for example, and on the fact that 
the temperature is below 100° Celcius or not.

Mode changes

Continuous 
Evolutions

...
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hybrid system that reaches a given set of states. As hybrid automata can be
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We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the
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HA syntax and 
semantics
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Hybrid automata - Syntax

• H=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump), where:

• Loc is a finite set {l1,l2,...,ln} of (control locations) modeling control 
modes of the automaton;

• Σ is a finite set of event names;

• Edge ⊆ Loc × Σ × Loc is a finite set of labelled edges that represent 
discrete changes between control modes;

• X is a finite set {x1,x2,...,xm} of real-valued variables. 
We write X‧={x‧1,x‧2,...,x‧m} for the associated dotted variables and 
X’= {x’1,x’2,...,x’m} for the associated primed variables.

• Init, Inv, and Flow are functions that assign three predicates to each 
location. 

• Jump is a function that assigns a predicate to each labelled edge.
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An hybrid automaton for the tank

An introduction to hybrid automta 5

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Hybrid automata - Syntax

• Init(l) is a predicate whose free variables are in X and 
which states the possible initial valuations for those 
variables when the automaton starts its execution in l;

• Inv(l) is a predicate whose free variables are in X and 
which states the possible valuations for those variables 
when the control of the automaton lies in l;

• Flow(l) is a predicate whose free variables are in X∪X‧ 
and which states the possible continuous evolutions 
when the control of the hybrid automaton is in l;

• Jump(e) is a predicate whose free variables are in X∪X’ 
and which states when the discrete jump is possible and 
what is its effect on the continuous variables.
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An hybrid automaton for the tank

Init(t4) =  “x=20”

An introduction to hybrid automta 5

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Hybrid automata - Syntax

• Init(l) is a predicate whose free variables are in X and 
which states the possible initial valuations for those 
variables when the automaton starts its execution in l;

• Inv(l) is a predicate whose free variables are in X and 
which states the possible valuations for those variables 
when the control of the automaton lies in l;

• Flow(l) is a predicate whose free variables are in X∪X‧ 
and which states the possible continuous evolutions 
when the control of the hybrid automaton is in l;

• Jump(e) is a predicate whose free variables are in X∪X’ 
and which states when the discrete jump is possible and 
what is its effect on the continuous variables.
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An hybrid automaton for the tank
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Hybrid automata - Syntax

• Init(l) is a predicate whose free variables are in X and 
which states the possible initial valuations for those 
variables when the automaton starts its execution in l;

• Inv(l) is a predicate whose free variables are in X and 
which states the possible valuations for those variables 
when the control of the automaton lies in l;

• Flow(l) is a predicate whose free variables are in X∪X‧ 
and which states the possible continuous evolutions 
when the control of the hybrid automaton is in l;

• Jump(e) is a predicate whose free variables are in X∪X’ 
and which states when the discrete jump is possible and 
what is its effect on the continuous variables.
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An hybrid automaton for the tank

Flow
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Hybrid automata - Syntax

• Init(l) is a predicate whose free variables are in X and 
which states the possible initial valuations for those 
variables when the automaton starts its execution in l;

• Inv(l) is a predicate whose free variables are in X and 
which states the possible valuations for those variables 
when the control of the automaton lies in l;

• Flow(l) is a predicate whose free variables are in X∪X‧ 
and which states the possible continuous evolutions 
when the control of the hybrid automaton is in l;

• Jump(e) is a predicate whose free variables are in X∪X’ 
and which states when the discrete jump is possible and 
what is its effect on the continuous variables.
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An hybrid automaton for the tank

Event from Σ

Jump
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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An hybrid automaton for the tank
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Inv

Flow

Init

Event from Σ

Jump
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Semantics

• At any instant in time, the state of the hybrid automaton 
specifies the control location and values for all the real-
valued variables.

• The state can change in two ways:

• discrete: by an instantaneous jump that changes possibly both the control 
and the values of real-variables;

• continuous: by a time delay that changes only the values of the real-
valued variables in a smooth manner according to the flow and invariant 
of the current control location.

• To capture such behaviors in a formal way, we use timed 
transition systems.
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Timed transition systems

• A timed transition system (TTS) is a tuple 
(S,S0,Σ,→) where:

• S is a (possibly infinite) set of states;

• S0 is the subset of initial states;

• Σ is a finite set of labels;

• →⊆S×Σ∪ℝ≥0×S is the transition relation.
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Timed transition systems

• Notations:

• [X→ℝ] denotes the set of functions from X to ℝ;

• Let p be a predicate over the set of variables X, 
we note ⟦p⟧ the set of valuations v∈[X→ℝ] satisfying p;

• Let q be a predicate over the set of variables X∪X’, 
we note ⟦q⟧ the set of pairs of valuations 
(v,v’)∈ [X→ℝ × X’→ℝ] satisfying q;

• Let r be a predicate over the set of variables  X∪X‧, 
we note ⟦r⟧ the set of pairs of valuations 
(v,v‧) ∈ [X→ℝ × X‧→ℝ] satisfying r.
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Timed transition system of a HA

• Let H=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump) be a HA. 

• Its associated TTS ⟦H⟧=(S,S0,Σ,→) is defined as follows:

• S is the set of pairs (l,v) where l∈Loc and v∈⟦Inv(l)⟧;

• S0 is the subset of pairs (l,v)∈S such that v∈⟦Init(l)⟧;
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Timed transition system of a HA

• discrete steps: 
for each edge e=(l,σ,l’)∈E,  we have (l,v)→σ(l’,v’) 
     if (l,v)∈S, (l’,v’)∈S and (v,v’)∈⟦Jump(e)⟧;

• continuous steps: for each δ∈ℝ≥0, we have (l,v)→δ(l’,v’) 
if (l,v)∈S,(l’,v’)∈S, l=l’, and there exists a differentiable 

function f:[0,δ]→ℝm,  with derivative f‧(0,δ)→ℝm 
such that :

   1) f(0)=v, 
   2) f(δ)=v’ and 
   3)for all ε∈(0,δ), both f(ε)∈⟦Inv(l)⟧ and 

                                                    (f(ε), f‧(ε))∈⟦Flow(l)⟧.

Transition relation
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Timed transition system of a HA

• In the timed transition system giving the semantics of the 
HA, we abstract continuous flows by transitions retaining 
only the information about the source, target and 
duration of each flow.

An introduction to hybrid automta 3

temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) 

An introduction to hybrid automta 5

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.
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ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) →12,7...→(t1,100)
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) →12,7...→(t1,100)→B→ (t2,100)
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) →12,7...→(t1,100)→B→ (t2,100)→7,2...→(t1,100)
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) →12,7...→(t1,100)→B→ (t2,100)→7,2...→(t1,100)→OFF→(t3,100)
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Abstracted by:
(t1,20) →12,7...→(t1,100)→B→ (t2,100)→7,2...→(t1,100)→OFF→(t3,100)→8→(t3,60)...
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Behaviors of HA=paths in TTS

• The paths contained in the TTS formalize the behaviors 
of the HA;

• Formally, a finite path, noted λ, in the TSS T=(S,S0,Σ,→) is 
finite sequence s0τ0s1τ1...τn-1sn such that for all i, 1≤i≤n, 
(si,τi,si+1)∈→. 

This definition extends to infinite paths. 

• The duration of a path is the sum of the durations of its 
time elapsing steps.

• We write PathF(⟦H⟧) for the set of finite paths in ⟦H⟧ 
and Path∞(⟦H⟧) for the set of infinite paths in ⟦H⟧.
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Ex. of an element in PathF(⟦Tank⟧)
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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it is denoted by |λ|. This definition is extended to infinite paths as follows:
an infinite path λ in the timed transition system T is an infinite sequence
alternating between states and transition labels s0τ0s1τ1 . . . τn−1sn . . . such
that for any i ≥ 0: si ∈ S and (si, τi, si+1) ∈→. The length of an infinite
path is +∞. The duration of a (finite or infinite) path λ is the sum of time
labels that appear along λ. That is, given λ = s0τ0s1τ1 . . . snτn . . . , let J be
a subset of indices j in {0, 1, . . . |λ|} such that τj ∈ R≥0, then the duration of
λ is defined by Duration(λ) =

∑
j∈J τj . We say that a (finite or infinite) path

λ is initial if its first state s0 is an initial state of the TTS, i.e. s0 ∈ S0. We
write PathF (T ) for the set of finite initial paths of S and Path∞(T ) for the
set of infinite initial paths of S.

Example 1. The following path belongs to PathF ([[Tank]]):

(t4, x %→ 20)
(1)

︷ ︸︸ ︷→ON(t1, x %→ 20)
(2)

︷︸︸︷→10(t1, x %→ 88.59 . . . )
(3)

︷ ︸︸ ︷→2.74...(t1, x %→ 100)
(4)

︷︸︸︷→B

(t2, x %→ 100)
(5)

︷︸︸︷→5 (t2, x %→ 100)
(6)

︷ ︸︸ ︷→OFF(t3, x %→ 100)
(7)

︷︸︸︷→8 (t3, x %→ 54.88 . . . )
Transition (1) is discrete: the control of the tank instantaneously changes
from control location t4 to control location t1. The value of x remains equal
to 20 due to the jump predicate x′ = x expressing that the value of x is
left unchanged by the discrete jump. The witness function for time step (2) is
f(t) = 20e−0.075t+150(1−e−0.075t) on the interval [0, 10]. For time step (3) the
witness function is f(t) = 88.59 . . . e−0.075t + 150(1− e−0.075t) on the interval
[0, 2.75]. Transition (4) is a discrete change that is forced by the invariant
20 ≤ x ≤ 100 that labels location t1. The witness function for time step (5) is
f(t) = 100 on the interval [0, 5]. Transition (6) is a discrete change that can
occur at any time when in location t2. The witness function for time step (7)
is f(t) = 100e−0.075t on the interval [0, 8].

Remark 1. If we are interested in the infinite behaviors of a hybrid automaton,
then we are usually interested in infinite sequences of transitions that do
not converge in time. In fact, trajectories during which an infinite number
of discrete changes occur in a finite amount of time are not realistic. It is
clear that if a controller takes discrete switches say at times 1

2 , 3
4 , 7

8 , 15
16 , . . . ,

then it is not implementable. In this case, we say that the controller is Zeno.
The nonZenoness property of an infinite path can be expressed as follows.
Let T 〈S, S0, Σ,→〉 be a TTS and λ be an infinite path of T . The path λ
is nonZeno if and only if Duration(λ) = +∞. The divergence of time is a
liveness assumption [AS85], and it is the only liveness assumption we need to
consider [Hen92]. Algorithmic methods for checking nonzenoness properties
of timed and hybrid automata are given in [HNSY94].

2.3 Composition

Nontrivial systems consist of several interacting components (three in our
running example). We model each component as a hybrid automaton, and

(1) discrete step

(2) f(t)=20e-0.075t+150(1-e-0.075t)    
     on [0,10]
     and f(0)=20, f(10)=88,59...

(3) f(t)=88,59...e-0.075t+150(1-e-0.075t)
     on [0,2.75]
... 

(5) f(t)=100
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Remark on non Zenoness

• Often, when considering behaviors of systems along 
(real) time, we are interested by nonZeno behaviors, that 
is behaviors in which time is not blocked. 

• In fact, a trajectory in which there are discrete jumps say 
at times 0.5, 0.75, 0.875, 0.9375, 0.96875, ... is not 
implementable by a discrete controller.

• We say that an infinite path λ is nonZeno if 
Duration(λ)=+∞.

• The divergence of time is a liveness assumption.
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Composition of HA

• Nontrivial hybrid systems consist of several interacting 
components;

• We model each component as a hybrid automaton ...

• ... and the components coordinate with each other by 
shared variables and shared events;
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Tank
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Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.
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by the two automata have as enabling condition the conjunction of the
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Tank
Common events
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HA product

• Let H1=(Loc1,Σ1,Edge1,X1,Init1,Inv1,Flow1,Jump1) and 
      H2=(Loc2,Σ2,Edge2,X2,Init2,Inv2,Flow2,Jump2).

• Their synchronized product is the hybrid automaton 
H1⊗H2=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump) defined as 
follows:

• Loc={ {l1,l2} | l1∈Loc1 ∧ l2∈Loc2 }

• Σ=Σ1∪Σ2; X=X1∪X2;

• Init({l1,l2})=Init1(l1)∧Init2(l2); 
Inv({l1,l2})=Inv1(l1)∧Inv2(l2); 
Flow({l1,l2})=Flow1(l1)∧Flow2(l2);
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HA product

• ({l1,l2},σ,{l3,l4}} ∈ Edge iff either
      (i) σ∈Σ1\Σ2, (l1,σ,l3)∈Edge1, and l2=l4;
      (ii) σ∈Σ2\Σ1, (l2,σ,l4)∈Edge2, and l1=l3;
      (iii) σ∈Σ1∩Σ2, (l1,σ,l3)∈Edge1, and (l2,σ,l4)∈Edge2. 

• for any edge ({l1,l2},σ,{l3,l4})∈Edge, we have that:

(i) Jump({l1,l2},σ,{l3,l4})

             =Jump1(l1,σ,l3)∧∧x ∈X\X1 x’=x if σ∈Σ1\Σ2

(ii) Symmetrically for σ∈Σ2\Σ1

(ii) Jump({l1,l2},σ,{l3,l4})
             =Jump1(l1,σ,l3)∧Jump2(l2,σ,l4) if σ∈Σ1∩Σ2

Tuesday 9 March 2010



Ex. product of Burner and Thermometer

An introduction to hybrid automta 9

Fig. 4. Hybrid automata for the burner and the thermometer

3. Jump({l11, l
2
1}, σ, {l12, l

2
2}) = Jump((l11, σ, l12)) ∧ Jump((l21 , σ, l22)) if σ ∈

Σ1 ∩ Σ2;
Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.
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location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Tank
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Ex. product of Burner and Thermometer

10 J.-F. Raskin

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l, σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduc-
tion, we restrict ourselves to properties that classify trajectories as good or
bad according to whether or not they stay or not in a given set of (good)
states. Those properties are called safety properties [AS85], and, are the most
important class of properties when considering safety critical systems.

Let us go back to our running example. Now that we have a complete model
of our system, we would like to design a controller that enforces some desired
behaviors. The controller will be an additional hybrid automaton that, when
composed with the automata modeling our system, must enforce the following
properties on the trajectories of the entire system:
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Σ1 ∩ Σ2;

Conditions 1 and 2 express that discrete changes that are local to one
automaton have the enabling condition and the effect described by the
jump predicate of that automaton and the variables which are not shared
remain unchanged. Condition 3 expresses that discrete changes shared
by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.
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location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Hybrid Systems
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Ex. of properties for our running example

• (R1) the temperature in the tank must never reach 100°;

• (R2) after 15 seconds of operation, the system must be in 
stable regime (the temperature must stay in the interval 
91°-97° Celcius);

• (R3) during this stable regime, the burner is never 
continously ON for more than two seconds.

All those properties are safety properties.
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Candidate controller for our system
12 J.-F. Raskin

Fig. 6. A controller for the system

Those two problems are dual in the following formal sense.

Theorem 1. For any TTS T , for any region R of T , Reach(T ) ⊆ R iff
Reach(T ) ∩ R = ∅.

Hence, solving a safety problem boils down to solving its dual reachability
problem. In that reachability problem, the region R is often called the set of
bad states.

Monitors

In order to formalize safety requirements, it is often very convenient to use
a monitor automaton, also often called an observer, that “watches” the tra-
jectories of the system and enters “Bad” locations whenever one trajectory
violates a given safety property. Safety verification is then reduced to decid-
ing the reachability of a set of “Bad” locations.

In Fig. 7(a), 7(b), and 7(c), we give the monitors for the safety require-
ments (R1), (R2), and (R3) respectively. The automaton Moni1 monitors the
value of variable x whose dynamics is defined in the tank automaton. As soon
as x reaches the value 100, the control of the monitor can move to location
w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the
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Those two problems are dual in the following formal sense.

Theorem 1. For any TTS T , for any region R of T , Reach(T ) ⊆ R iff
Reach(T ) ∩ R = ∅.

Hence, solving a safety problem boils down to solving its dual reachability
problem. In that reachability problem, the region R is often called the set of
bad states.

Monitors

In order to formalize safety requirements, it is often very convenient to use
a monitor automaton, also often called an observer, that “watches” the tra-
jectories of the system and enters “Bad” locations whenever one trajectory
violates a given safety property. Safety verification is then reduced to decid-
ing the reachability of a set of “Bad” locations.

In Fig. 7(a), 7(b), and 7(c), we give the monitors for the safety require-
ments (R1), (R2), and (R3) respectively. The automaton Moni1 monitors the
value of variable x whose dynamics is defined in the tank automaton. As soon
as x reaches the value 100, the control of the monitor can move to location
w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the

Does this enforce R1-R2 an
d R3 ?
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Safety and reachability

• To formalize safety, we need some more notations. 

• Let T=(S,S0,Σ,→) be a TTS. Let λ=s0τ0s1τ1...sn ∈ PathF(T). 
State(λ) denotes the set of states that appear along λ. 

• We say that a path λ reaches a state s if s ∈ State(λ).

• We say that s is reachable in T if s ∈ ∪λ∈PathF(T) State(λ).

• Reach(T) denotes the set of states reachable in T.
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• A set of state R⊆S is called a region. 

• A region R is reachable in T iff R∩Reach(T)≠∅.

• The rechability problem associated to a TTS T and a region R 
asks if R∩Reach(T)≠∅.

• The safety problem associated to a TTS T and a region R asks 
if Reach(T)⊆R.

• Those two problems are dual in the following formal sense: 

Let R be a region and R’=S\R.
 
                  Reach(T)⊆R iff R’∩Reach(T)=∅.

Safety and reachability
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Monitors

• Requirement R1 can be formalized using a region of Bad 
states. 

The system is correct if we avoid the region Bad i.e., 
Bad is unreachable.

• Requirements R2 and R3 can not be formalized directly 
using regions. 

Instead, we will use monitors.

• A monitor (also called observer) is an HA that watches 
the trajectory of the system and enters “Bad” locations 
whenever the observed behavior violates the safety 
condition.

Tuesday 9 March 2010



Monitor for requirement R2

An introduction to hybrid automta 13

(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)
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From safety to monitors and reachability

• To verify R2 on our system, we consider the product of 
the monitor with the system i.e.,

       Tank⊗Burner⊗Thermo⊗Controller⊗Moni2

• Then we check for the reachability of the region that 
contains the states in which Moni2 is in location w3 or w4 
(the locations labelled with “Bad”).

An introduction to hybrid automta 13

(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)

Tank⊗Burner⊗Thermo⊗Controller⊗
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How do we solve reachability problems ?

• Direct successor operator PostT:2S→2S:

PostT(S’)
= { s∈S | ∃s’∈S’•(∃σ∈Σ:(s’,σ,s)∈→)∨(∃δ∈ℝ≥0:(s’,δ,s)∈→) }

• Direct predecessor operator PreT:2S→2S:

PreT(S’)

= { s∈S | ∃s’∈S’•(∃σ∈Σ:(s,σ,s’)∈→)∨(∃δ∈ℝ≥0:(s,δ,s’)∈→) }
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How do we solve reachability problems ?

• The set of reachable states of a HA H with TTS ⟦H⟧ is 
defined by the least solution of the following equation:

                         X=( S0 ∪ Post⟦H⟧(X) )

where X ranges over sets of states.

• Symmetrically, the set of states that can reach R is defined by 
the least solution of the following equation:

                         X=( R ∪ Pre⟦H⟧(X) )
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Initial states 
A

Bad states
E

?

The reachability problem
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discrete transition

Continuous evolution (time 

passing) 

Post operator
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A

E

A ∪ post(A)

Iteration of the Post operator
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A

E

A ∪ post(A) ∪ post2(A)

Iteration of the Post operator
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A

E

Iteration of the Post operator
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Undecidability - Non representability

• Computing solutions of the fixed point equations 
(forward or the backward approach) is often difficult. 

Convergence in a finite number of approximation steps is 
not guaranteed ...

• ... furthermore, even one step of computation may not be 
feasible, as we can not solve general differential 
equations/inclusions ...

• ... there are also representability issues: how to represent 
the set of successors of a region ? This set may not have 
a symbolic representation.

• Furthermore, even very restricted subclasses of hybrid 
automata have an undecidable reachability problem.  
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Rectangular hybrid 
automata
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Rectangular Hybrid Automata

• Rectangular automata are a subclass of hybrid automata 
where dynamics are constraints by rectangular 
constraints and updates are restricted by rectangular 
updates;

• A interval is a convex non-empty subset of the positive 
real-numbers with rational bounds;

• Rect(X) ∋ Φ1,Φ2  := ⟘ | ⟙ | x∈I | Φ1∧Φ2 

• UpdateRect(X) ∋ Φ1,Φ2  

                         := ⟘ | ⟙ | x∈I | x’∈I | x’=x | Φ1∧Φ2

• A rectangular HA is an HA where Init(‧) and Inv(‧) are 
constraints in Rect(X), Jump(‧) in UpdateRect(X), and 
Flow(‧) in Rect(X‧).
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Example of a rectangular automaton

An introduction to hybrid automta 19

least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [Mil71],
and we refer the interested reader to [HHWT98] for a correctness proof. The
automaton obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [HHWT97]. HyTech is a model-checking tool for the reachability
analysis of linear hybrid automata, a class of hybrid automata that subsumes
the class of rectangular hybrid automata. HyTech allows us to describe each
component of the system directly as a rectangular automaton in a textual syn-
tax and to formalize reachability questions using a simple (and yet powerful)
script language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.
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Semi-algorithms for 
rectangular hybrid 

automata
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Effective procedure for Post in RHA

• A linear term over X is a linear combination of the 
variables in X with integer coefficients.  

ex : 3x+2y-1.

• A linear formula over X is a boolean combination of 
inequalities between linear terms over X.

ex : 3x+2y-1≥0 ∧ y≥5.

• Given a linear formula ψ, we write ⟦ψ⟧ for the set of 
valuations v such that v ⊨ ψ.
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Effective procedure for Post in RHA

• If we allow quantifiers with linear formulas we obtain 
the theory of reals with addition T(ℝ,0,1,+,≤). 

This theory allows for quantifier elimination.

ex : “∀ y • y ≥ 5 → x+y ≥ 7” is equivalent to “x≥2”.

• A symbolic region of H is a finite set 

             { (l,ψl) | l ∈ Loc } where ⟦ψl⟧⊆⟦Inv(l)⟧.
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Effective procedure for Post in RHA

Given a location l∈Loc and a set of valuations V⊆[X→ℝ] such that 
V⊆Inv(l), the forward time closure, noted ⟨V⟩l↗ is the set of valuations 

of variables in X that are reachable from some valuation v∈V by 
letting time pass. 

This set is defined as follows:

⟨V⟩l↗ is the set of valuation v’∈ [X→ℝ] such that 

∃v∈V • ∃t∈ℝ≥0 • ∀x∈X•

v(x)+t×Inf(⟦Flow(l)⟧(x)) ≤ v’(x) ≤ v(x)+t×Sup(⟦Flow(l)⟧(x)) 
and v’(x)∈⟦Inv(l)⟧.

As quantifiers can be eliminated, the resulting formula is a boolean 
combination of linear constraints.

Tuesday 9 March 2010



An example of time elapsing

x

y

Assume x•=[1,2] and y•=1

Φ={ (x,y) |    x∈[1,4] 
                ∧ y∈[1,6] 
                ∧ y≥-2x+5 ∧ ... }
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An example of time elapsing

x

y

0 1 2

0

1
Assume x•=[1,2] and y•=1
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An example of time elapsing

x

y

Assume x•=[1,2] and y•=1
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An example of time elapsing

x

y

Assume x•=[1,2] and y•=1 ...

Time successors o
f Φ
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An example of time elapsing

x

y

Assume x•=[1,2] and y•=1 ...

Location invariant
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An example of time elapsing

x

y

Assume x•=[1,2] and y•=1
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An example of discrete step

x

y

Assume a transition 
with guard x≤5 and 
reset of y to zero.
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An example of discrete step
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Assume a transition 
with guard x≤5 and 
reset of y to zero.
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An example of discrete step

x

y

Assume a transition 
with guard x≤5 and 
reset of y to zero.

All those operatio
ns boil down to 

polyhedra m
anipulations
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discrete transition (linear 
transformation)

Continuous evolution (time 

passing) 

Forward reachability analysis
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Initial states 
A

Bad states
E

?

Forward reachability analysis
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A

E

A ∪ post(A)

Forward reachability analysis
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A

E

A ∪ post(A) ∪ post2(A)

Forward reachability analysis
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Parameter values 
that lead to an 

error

A

E

Forward reachability analysis
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A

E

Forward reachability analysis
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Parameter values 
that lead to an 

error

A

E

Forward reachability analysis

Here, all sets are 
representable by linear 

formulas i.e., finite sets of 
polyhedra.

Tuesday 9 March 2010



Undecidability

Nevetheless...

Theorem. The reachability problem for rectangular hybrid automata is 
undecidable.

Proof (sketch). By simulation of two counter machines for which the 
halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction j: c1:=c1+1; goto k;

j
x1‧=1
x2‧=0
z‧=0

z’=0
assume 

v(x1)=val(c1)
v(x2)=val(c2)

k
...

z=1 ∧ z’=0
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Initialized RHA

• A RHA is initialized if for all discrete jumps (l1,σ,l2), for all 
variables x∈X:

• either the flow constraints on x in l1 and l2 are identical

• or variable x is updated during the discrete jump from l1 to l2. 
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Initialized RHA

• A RHA is initialized if for all discrete jumps (l1,σ,l2), for all 
variables x∈X:

• either the flow constraints on x in l1 and l2 are identical

• or variable x is updated during the discrete jump from l1 to l2. 

j
x1‧=1

x2‧=(0,2)
z‧=0

k
x1‧=1
x2‧=2
z‧=0

z=1 ∧ z’=0

is not initialiazed
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Initialized RHA

• A RHA is initialized if for all discrete jumps (l1,σ,l2), for all 
variables x∈X:

• either the flow constraints on x in l1 and l2 are identical

• or variable x is updated during the discrete jump from l1 to l2. 

j
x1‧=1

x2‧=(0,2)
z‧=0

k
x1‧=1
x2‧=2
z‧=0

z=1 ∧ z’=0 ∧ x’ ∈ [2,3]

is initialiazed
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Initialized RHA

• A RHA is initialized if for all discrete jumps (l1,σ,l2), for all 
variables x∈X:

• either the flow constraints on x in l1 and l2 are identical

• or variable x is updated during the discrete jump from l1 to l2. 

Theorem. The reachability problem (and LTL model-checking 
problem) is decidable for the class of initialized rectangular 
automata.

Note that Initialized RHA generalizes timed automata.
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Approximating 
affine hybrid automata by 

rectangular hybrid automata
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Rectangular approximations

• Approximate complex dynamics with rectangular 
dynamics in a systematic way;

• ... this allow us to use PhaVer or Hytech for 
example.

• In practice, those approximations are often precise 
enough to infer important properties of the original 
HA.

• ... this is related to abstract interpretation. 
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Rectangular approximations

• For each control mode we partition the space into rectangular 
regions;

• Within each region, the flow field is over-approximated using 
rectangular flows. 

• Those approximations can often be obtained automatically by 
computing lower and upper bounds on derivatives within 
rectangular regions. 

• The approximations can be made arbitrarily precise by 
approximating over suitably small regions of the state space. 
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least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Maxx∈[20,100] K(h-x) = K(h-20) = 0.075(150-20) = 9.75 ≤10
Minx∈[20,100] K(h-x) = K(h-100) = 0.075(150-100) = 3.75 ≥ 3
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least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.

• Applying this computation for each location, we get the 
following rectangular approximation of the tank:
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Over-approximations and correctness

• Let us note RectOver(H) the rectangular 
overapproximation obtained using the previous method;

• RectOver(H) is a over-approximaiton of the original 
system in the following formal sense:

       PathF(⟦H⟧) ⊆ PathF(⟦RectOver(H)⟧)

• Transfert of correctness from overapproximations:

       if PathF(⟦RectOver(H)⟧)∩BadPaths=∅ 
            then PathF(⟦H⟧)∩BadPaths=∅
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Over-approximations and false negatives

• When over-approximating the behavior of a system, we 
face the possibility to get false negatives during 
verification;

• Indeed, the set of behaviors of the over-approximation is 
a superset of the behaviors of the original system...

• ...so if we have that 

        PathF(⟦RectOver(H)⟧)∩BadPaths≠∅ 

it is not nessarily the case that 

                    PathF(⟦H⟧)∩BadPaths≠∅
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Candidate counter examples

• A path λ=s0τ0s1τ1...τn-1sn is an candidate counter example if 

• λ ∈ ⟦OverRect(H)⟧ ∩ BadPaths

• When facing a candidate counter example, we check if the 
counter example is realizable in the original model, so we 
ask:

• λ ∈? ⟦H⟧

This test is possible for larger class than rectangular 
automata, i.e. affine/polynomial hybrid automata.

• If λ∈⟦H⟧, then we have found a real counter example i.e., the 
a Bad path in the original HA H.
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Spurious counter-examples

• If λ∉⟦H⟧, then λ is a spurious counter example i.e.:

• λ ∈ ⟦OverRect(H)⟧ ∩ BadPaths

• λ ∉ ⟦H⟧

• In this case, we must refine OverRect(H) in order 
to eliminate the counter example.

• There is a large research effort in the CAV 
community on the so-called counter-example 
based abstraction refinement, and variants.
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Abstraction refinement

• In presence of spurious counter examples, we refine the  
rectangular approximation by splitting locations to 
decorate them with smaller rectangular regions.
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least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions

x’=x
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Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions
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Conclusion

• We have defined the syntax and semantics of hybrid 
automata ...

• ... shown how to use them to model compositionally a 
hybrid system ...

• ... shown how to formalize safety requirements using 
monitors ...

• ... recalled the main ingredients for safety and reachability 
analysis ...

• ... introduced the subclasses of rectangular hybrid 
automata and initialized RHA ...

• ... shown how to over-approximate complex hybrid 
automata using RHA.
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