An Introduction to
Hybrid Automata

Jean-Frangois Raskin
U.L.B.

Plan of the talk

® |Introduction - Motivations

® Hybrid automata: syntax and semantics

® Properties of hybrid automata

® Rectangular hybrid automata

® Semi-algorithms for rectangular hybrid automata

® Approximations of affine hybrid automata
by rectangular hybrid automata

® Conclusion

Tuesday 9 March 2010

Introduction
Motivations

Reactive and embedded systems

® Reactive systems are systems that maintain a
continuous interaction with their environment.

® Reactive systems :
® are non-terminating systems
® have to respect or enforce real-time properties
® have to cope with concurrency

® are often embedded into an complex, continuous
and safety critical, environments.

Tuesday 9 March 2010

BOEINTG ."W.m =

R CEL L .l..‘.ll.... »

B R LR L L
.

Tuesday 9 March 2010

300 horses power
100 processors

Tuesday 9 March 2010

An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRL4ALT4RESET to restart your computer., You will
lose any unsaved information in all applications,

Press any key to continue

Tuesday 9 March 2010

Tuesday 9 March 2010

Reactive and embedded systems

® The specification that have to meet ES are very complex
(e.g. environment=continuous system, concurrency, real-
time,...)

® ES are difficult to test;

® the environment in which they are embedded does not
preexist/is difficult to simulate (e.g. rocket, medical
equipment, ...);

® even when errors are found, their diagnostic is diffult, we
may not be able to “replay”’ the erroneous behavior.

Tuesday 9 March 2010

Need for FM and verification

e .. they are difficult to develp correctly !

® .. they are often safety critical !

= we should very them !

How to cope with complexity in sciences !

Tuesday 9 March 2010

Hybrid Automata

Mixing discrete-continuous evolutions

® Finite state automata have shown useful to model the
control of reactive systems

® Reactive systems often have non-trivial interactions with
continuous environment in which they are embedded

® We need a model which is able to model the discrete
evolution of the controller and the continuous evolution
of the environment

® Hybrid automata extend finite automata with continuous
variables whose behaviors are described using differential
constraints.

Tuesday 9 March 2010

Our running example

Q -
1 Thermometer

Digital

& Controller
burner

Fig. 1. Our running example

Tuesday 9 March 2010

Our running example

Digital
Controller

Fig. 1. Our running example

® Three environment components plus a controller:
® A tank containing water;
® A gas burner that can be turn on or off;

® A digital thermometer that monitor the temperature within the tank.

® We want to design a controller that will maintain the
temperature in the tank within an interval of safe
temperatures.

Tuesday 9 March 2010

Continuous part

® Behavior of the temperature in the tank

Q

o
_|
>
o
3
(e}
3
0]
©

® When the gas burner is OFF the temperature evolves according to —

Digital
Controller

x(t) = I ekt 1

i.e.x = -Kx s e

Fig. 1. Our running example

® When the gas burner is ON the temperature evolves according to
x(t) =l eKt+ h (1-eKt)
i.e. x = K(h-x)
Where | is the initial temperature of the water, K is a constant that depends on the

nature of the tank (how much it conducts heat for example), h is a constant that
depends on the power of the gas burner, and t models time.

® We will refer to ON and OFF as modes of the tank evolution.

® Note that those rules are valid only when the temperature of the water
is less than 100° celcius.

Tuesday 9 March 2010

Fragment of the evolution of the temperature

O Mode changes 100,

. 80 A
Continuous

Evolutions 60 .

time

Digital
Controller

Fig. 2. One possible behavior of the tank

Clearly the evolution of the temperature is not purely continuous. It
depends on the mode ON and OFF for example, and on the fact that
the temperature is below 100° Celcius or not.

Tuesday 9 March 2010

HA syntax and
semantics

Hybrid automata - Syntax

® H=(Loc,2,Edge, X, Init,Inv,Flow,Jump), where:

Loc is a finite set {l},l2,...,In} of (control locations) modeling control
modes of the automaton;

2 is a finite set of event nhames;

Edge C Loc X 2 % Loc is a finite set of labelled edges that represent
discrete changes between control modes;

X is a finite set {X,X2,...,Xm} of real-valued variables.
We write X'={x"|,X"2,...,x m} for the associated dotted variables and
X'= {x’1,X’2,...,X’m} for the associated primed variables.

Init, Inv, and Flow are functions that assign three predicates to each
location.

Jump is a function that assigns a predicate to each labelled edge.

Tuesday 9 March 2010

An hybrid automaton for the tank

N N
. Y
Ve N
))

Tuesday 9 March 2010

Hybrid automata - Syntax

® |nit(l) is a predicate whose free variables are in X and
which states the possible initial valuations for those
variables when the automaton starts its execution in [;

Tuesday 9 March 2010

An hybrid automaton for the tank

4 N
Init(ts4) = “x=20”\ /

xr = 20

Hybrid automata - Syntax

Init(l) is a predicate whose free variables are in X and
which states the possible initial valuations for those
variables when the automaton starts its execution in [;

Inv(l) is a predicate whose free variables are in X and
which states the possible valuations for those variables
when the control of the automaton lies in |;

Tuesday 9 March 2010

An hybrid automaton for the tank

Inv\

20 < z < 100

B,mzl[][}h:c":m

- ¥ <\

Tuesday 9 March 2010

Hybrid automata - Syntax

Init(l) is a predicate whose free variables are in X and
which states the possible initial valuations for those
variables when the automaton starts its execution in [;

Inv(l) is a predicate whose free variables are in X and
which states the possible valuations for those variables
when the control of the automaton lies in |;

Flow(l) is a predicate whose free variables are in XuX’

and which states the possible continuous evolutions
when the control of the hybrid automaton is in |;

Tuesday 9 March 2010

An hybrid automaton for the tank

20 < z < 100

B,mzl[][}h:c":m

¥ <\

Flow

Tuesday 9 March 2010

Hybrid automata - Syntax

® |nit(l) is a predicate whose free variables are in X and
which states the possible initial valuations for those
variables when the automaton starts its execution in [;

® Inv(l) is a predicate whose free variables are in X and
which states the possible valuations for those variables

when the control of the automaton lies in I;

® Flow(l) is a predicate whose free variables are in XuX’

and which states the possible continuous evolutions
when the control of the hybrid automaton is in |;

® Jump(e) is a predicate whose free variables are in XuX’

and which states when the discrete jump is possible and
what is its effect on the continuous variables.

Tuesday 9 March 2010

An hybrid automaton for the tank

20 < z < 100

Event from 2
4 N /

B,mzl[][}h:c":m

|
~— <\ ump

An hybrid automaton for the tank

Event from 2
InV(20 < = < 100 x = 100
e N e N
0 b K(h— o B,z = 10 z =« N L Lo
\ A
Init)

\ Ve

_

Flow

Tuesday 9 March 2010

Semantics

® At any instant in time, the state of the hybrid automaton
specifies the control location and values for all the real-
valued variables.

® The state can change in two ways:

® discrete: by an instantaneous jump that changes possibly both the control
and the values of real-variables;

® continuous: by a time delay that changes only the values of the real-
valued variables in a smooth manner according to the flow and invariant
of the current control location.

® TJo capture such behaviors in a formal way, we use timed
transition systems.

Tuesday 9 March 2010

Timed transition systems

® A timed transition system (TTYS) is a tuple
(5,50,2,—) where:

® Sisa (possibly infinite) set of states;

® o is the subset of initial states;

® 2 is a finite set of labels;

® —CSx>uR=9%S is the transition relation.

Tuesday 9 March 2010

Timed transition systems

® Notations:

‘X—R] denotes the set of functions from X to R;

_et p be a predicate over the set of variables X,
we note [p] the set of valuations ve[X—R] satisfying p;

Let q be a predicate over the set of variables XuX,
we note [q] the set of pairs of valuations

(v,w)e [X—=R x X’=R] satisfying q;

Let r be a predicate over the set of variables XuX,
we note [r] the set of pairs of valuations

(v,v) € [X2R x X" R] satisfying -

Tuesday 9 March 2010

Timed transition system of a HA

® |et H=(Loc,2,Edge, X Init,Inv,Flow,Jump) be a HA.

® |ts associated TTS [H]=(5,S0,2,—) is defined as follows:

® S is the set of pairs (l,v) where leLoc and ve[lnv()];

® 5o is the subset of pairs (l,v)eS such that ve[Init(l)];

Tuesday 9 March 2010

Timed transition

system of a HA

Transition relation

® discrete steps:

for each edge e=(l,0,I')eE, we have (l,v)—(I',Vv’)

if (I,v)eS, (I,v')eS and

(v,v)el[Jump(e)];

® continuous steps: for each 0eR =0, we have (I,v)—5(I’,V)

if (I,v)eS,(I,v)eS, 1=, anc

there exists a differentiable

function f:[0,0]R™, wit
such that :

1) £(0)=v,
2) f(0)=v’ and

h derivative f (0,0) @ R™

3)for all £€(0,0), both f(€)e[Inv(l)] and

(f(€), f (€))e[Flow())].

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

100+

80 4

60

40 4

20 4

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20)

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

100+

80 4

60

40 4

20 4

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20) = 12,7...—(tl,100)

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

100+

80 4

60

40 4

20 4

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20) = 12,7...—(tl,100)—=B— (t2,100)

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

100+

80 4

60

40 4

20 4

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20) = 12,7...—(tl,100)—=B— (t2,100)—7,2...—(tl,100)

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

100+

80 4

60

40 4

20 4

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20) = 12,7...—(tl,100)—=B— (t2,100)—7,2...—(tl,100)

Tuesday 9 March 2010

Timed transition system of a HA

® |n the timed transition system giving the semantics of the
HA, we abstract continuous flows by transitions retaining
only the information about the source, target and
duration of each flow.

1004 - - - mmmm oo - T — - - - - - oo — o=,

80 -
60 -
OFF,z’ = =

40 4

20 4

time

Fig. 2. One possible behavior of the tank

Abstracted by:
(t1,20) = 12,7...—(tl,100)—=B— (t2,100)—7,2...—(tl,100) —8—(3,60)...

Tuesday 9 March 2010

Behaviors of HA=paths in TTS

® The paths contained in the TTS formalize the behaviors
of the HA;

® Formally, a finite path, noted A, in the TSS T=(5,50,2,—) is

finite sequence soTos|Ti...Th-1Sn such that for all i, | <i<n,
(Si’Ti’Si'l' |)E -,

This definition extends to infinite paths.

® The duration of a path is the sum of the durations of its
time elapsing steps.

® We write Pathr([H]) for the set of finite paths in [H]
and Path«([H]) for the set of infinite paths in [H].

Tuesday 9 March 2010

Ex. of an element in PathF([Tank])

(1) (2) (3) (4)
(tg,x +— 20)=onN(t1,z — 20)=>10(t1,x — 88.59...) 5974 (t1,2 — 100)—pg
(5) (6) (7)
(t2, x +— 100)—5(t2, z — 100) —orF(t3, x — 100) —g\(t3, z — 54.88...)

T S
B = 100 A2/ = & (1) discrete step
tq & = K(h —) > i -0 to

_ A _) (2) f(t)zzoe-0.075t+ 150(| _e-0.075t)
on [0,10]
and (0)=20, f(10)=88,59...

(3) f(t)=88,59...e 0975+ | 50(| -e-0-97>¢)
ta ! on [0,2.75]
4 N
o[T (5)f9)=100
NS / NS /)10

Tuesday 9 March 2010

Remark on non Zenoness

Often, when considering behaviors of systems along
(real) time, we are interested by nonZeno behaviors, that
is behaviors in which time is not blocked.

In fact, a trajectory in which there are discrete jumps say
at times 0.5,0.75,0.875,0.9375,0.9687/5, ... is not
implementable by a discrete controller.

We say that an infinite path A is nonZeno if
Duration(A\)=+00.

The divergence of time is a liveness assumption.

Tuesday 9 March 2010

Composition of HA

® Nontrivial hybrid systems consist of several interacting
components;

® We model each component as a hybrid automaton ...

® .. and the components coordinate with each other by
shared variables and shared events;

Tuesday 9 March 2010

Our running example

20 < x < 100 x = 100

4 N 4 N

B,r = 100 A o/ = =z
t1 t = K(h — x) > z =0 t2

ON, z! = 2 OFF,:I:, =z

—> z =0 D T = —Kx t3
C,a:=20/\a;/=a;

_ / o %

x = 20 Tank 20 < x < 100

Tuesday 9 March 2010

Our running example

y=20 1
by Y=< 15
. B\ . B\
TURN-ON, ¢/ =0
— y =10 > y=1 b
N . Y, N Y,
OFF, y' =0 ON, y" =0
e B\ e ! B\
, TURN-OFF, ¢/ =0 ,
b4 y=1 < y=20 b3
N Y, N Y,
y < 4
Burner

Tuesday 9 March 2010

Our running example

z=%/\x295/\z’:o, UP95

<L =
=10 =1 :>6,2110/\93<33<95/\z’0

=15 Az <93Az =0, DWI3

Thermometer

Tuesday 9 March 2010

Our running example

20 < ¢ < 100 x = 100
B,x = 100 Az’ ==
to
OFF, 4 =0 ON, y' =0
Y
TURN-OFF, ¢/ =0
OFF,aclzac
Burner

z=15Ax>95A 2 =0, UP9

t3

z=0
z< L
20 < z < 100 = 10 € 2=15N93<z<95AZ =0

z=%/\m§93/\z’=0, DWO93

Common events

Thermometer

Tuesday 9 March 2010

HA product

® |et H'=(Loc',2!Edge' X! Init!,Inv!,Flow',Jump') and
H2=(Loc?,22,Edge?, X2 Init?,Inv2,Flow?,Jump?).

® Their synchronized product is the hybrid automaton
H|®H>=(Loc,2,Edge, X Init,Inv,Flow,Jump) defined as
follows:

o Loc={{I'1} | I'eLoc' A eLoc?}
o >=>ly22 X=XluX?

o Init({I',I2})=Init' (I") Alnit?(1?);
Inv({l',I2})=Inv' (I Alnv2(1?);
Flow({l',12})=Flow! (I") AFlow?(I?);

Tuesday 9 March 2010

HA product

o ({I'1%},0,{I3,1%}} € Edge iff either
(i) oe2\22, (I',0,1%)eEdge’, and I>=I4%
(i) oe2?\2!, (I%,0,1*)eEdge?, and I'=13;
(iii) oe2'n22, (I',0,1%)eEdge', and (I?,0,1*)eEdge?.

® for any edge ({l',I?},0,{I°,|*})eEdge, we have that:

(i) Jump({I'.1?},0.{1%I})

=Jump!(I',G,P)AAx exix! X'=x if 0eX\22
i) Symmetrically for ge22\2!
(ii) Sy y

(i) Jump({l'.I?},0.{F,I})

=Jump'(I',0,B) AJump(12,0,I) if o€Z'n%?2

Tuesday 9 March 2010

Ex. product of Burner and Thermometer

20 < =z €100 x = 100

z:%/\xz%/\z’zo, UP95

> P to
_ \\/m
1 .
OFF,z’ = = STy z=1 :>6,2110/\93<x<95/\z’0
ta U

z:ll—o/\x§93/\z’:0, DW93

B,x = 100 Az’ ==

ty

x = 20 20 < z < 100

Thermometer

Tank

Tuesday 9 March 2010

Ex. product of Burner and Thermometer

r>95 ANz =+

10
9B<r<IHANz=% UP9s, ° = ;10
© A — A =0 AN =x N2 =0
20§x§100/\z§1—10
4) 4 N
t=K(h—2x)
t*th . > e ‘:
{t, tha} Nz =1 B,z =100AN2' =zA2' ==z T=0nz=0
N\ N\ J
{t2,th,} xr=100AN2z < %
1 /
DW93, AN =2 ANz <93
ON, 2/ =z N2 =2 OFF, 2/ =z N2 =z
OFF, 2’ =z N2 =z
r>95A =x Aw =+
upP9s, ~ 10
r=20Nz< 4 AN =0A2 =2
r=20Az=0 A A ‘ A
Crx=20Na'=aN =z t=—-Kzx 1
t=0Az2=1 A5 — 1 z§1—0A20§x§100
- J & J
{ta, th1} {ts,th1}
r<93ANz=+%
DW093 N 10
AN =zAD =1
DWO3, z = 5 A2 =0Aa' =z 6£NB<r<IHAz=:AZ=0A2 =2z

10

Tuesday 9 March 2010

Ex. product of Burner and Thermometer

20 < & < 100

\¢<\

z=1Ax>95A2 =0, UP95

€, 2=AN9B<z<9AZ =0

%/\xﬁ%/\z’:o, DW93

z =

Tuesday 9 March 2010

€

WB<r<9hAz=-=L1
AN =2 AN =0

DW93,

{t1,th}

z:%/\z’:O
ANt =x ANz <93

ON, 2/ =a AN =2

Properties of
Hybrid Systems

Ex. of properties for our running example

® (R|) the temperature in the tank must never reach 100°;

® (Ry) after |5 seconds of operation, the system must be in

stable regime (the temperature must stay in the interval
91°-97° Celcius);

(R3) during this stable regime, the burner is never
continously ON for more than two seconds.

All those properties are safety properties.

Tuesday 9 March 2010

Candidate controller for our system

s=20 UP95

s <0

- \ - \
DWO3, s’ =0

—> s=20 > s=1

N Y, N Y,
A C1 C2
TURN-OFF TURN-ON
C4 C3 v

- \ - \

=1 - =0

i UP95, s’ =0 i

N Y, N Y,

Tuesday 9 March 2010

Candidate controller for our system

TURN-ON

Tuesday 9 March 2010

Safety and reachability

To formalize safety, we need some more notations.

Let T=(5,S0,2,—) be aTTS. Let A=soTosIT1...sn € Pathg(T).
State(A) denotes the set of states that appear along A.

We say that a path A reaches a state s if s € State(A).

We say that s is reachable in T if s € Uaepathr(T) State(A).

Reach(T) denotes the set of states reachable inT.

Tuesday 9 March 2010

Safety and reachability

A set of state RCS is called a region.
A region R is reachable in T iff RnReach(T)+2.

The rechability problem associated to aTTS T and a region R
asks if RnReach(T)+@.

The safety problem associated to a TTS T and a region R asks
if Reach(T)CR.

Those two problems are dual in the following formal sense:
Let R be a region and R’=S\R.

Reach(T)CR iff R’ nReach(T)=g.

Tuesday 9 March 2010

Monitors

® Requirement R| can be formalized using a region of Bad

states.

The system is correct if we avoid the region Bad i.e.,
Bad is unreachable.

Requirements Rz and R3 can not be formalized directly
using regions.

Instead, we will use monitors.

A monitor (also called observer) is an HA that watches
the trajectory of the system and enters “Bad” locations
whenever the observed behavior violates the safety
condition.

Tuesday 9 March 2010

Monitor for requirement R;

t <15 x> 97
4 I 4 I
. e,t =15 ” Bad”
- t=1 g -
-)
w1 1 ws
€
Wy w2
4 I
t=20
-) o J
r <91 91 < x <97

Tuesday 9 March 2010

From safety to monitors and reachability

® To verify Ry on our system, we consider the product of
the monitor with the system i.e.,

Tank®Burner® Thermo®Controller®Moniz

® Then we check for the reachability of the region that
contains the states in which Moniy is in location w3 or w4
(the locations labelled with “Bad”).

Tank®Burner® Thermo®Controller®

Tuesday 9 March 2010

How do we solve reachability problems ?

® Direct successor operator Post':25—25:

Post'(S’)
= { seS | 35'€S’*(30€3:(s',0,5)e) v(IOeR 2%(s,D,5)e) }

® Direct predecessor operator Pre’:2>—25;

Pre’(S)
= { seS | 3s’eS’*(30€2:(s,0,5')e) v(I0€R =0%(5,0,5") e) }

Tuesday 9 March 2010

How do we solve reachability problems ?

® The set of reachable states of a HA H with TTS [H] is
defined by the least solution of the following equation:

X=(So u PostIHI(X))

where X ranges over sets of states.

® Symmetrically, the set of states that can reach R is defined by
the least solution of the following equation:

X=(R u Prelf](X))

Tuesday 9 March 2010

The reachability problem

Post operator

Continuous evolution (time

passing)

v

Tuesday 9 March 2010

Iteration of the Post operator

Tuesday 9 March 2010

Iteration of the Post operator

Iteration of the Post operator

Undecidability - Non representability

® Computing solutions of the fixed point equations
(forward or the backward approach) is often difficult.

Convergence in a finite number of approximation steps is
not guaranteed ...

® .. furthermore, even one step of computation may not be
feasible, as we can not solve general differential
equations/inclusions ...

® ... there are also representability issues: how to represent
the set of successors of a region ? This set may not have
a symbolic representation.

® Furthermore, even very restricted subclasses of hybrid
automata have an undecidable reachability problem.

Tuesday 9 March 2010

Rectangular hybrid
automata

Rectangular Hybrid Automata

® Rectangular automata are a subclass of hybrid automata
where dynamics are constraints by rectangular
constraints and updates are restricted by rectangular
updates;

® A interval is a convex non-empty subset of the positive
real-numbers with rational bounds;

® Rect(X)2 9,0 := 1| T|xel|PaAd;

® UpdateRect(X) > &,,P;
=1L | T |xel|Xel| xX=x| P Ad;

® A rectangular HA is an HA where Init(-) and Inv(-) are

constraints in Rect(X), Jump(-) in UpdateRect(X), and
Flow(+) in Rect(X).

Tuesday 9 March 2010

Example of a rectangular automaton

r = 20 20 < o <100

Tuesday 9 March 2010

Semi-algorithms for
rectangular hybrid
automata

Effective procedure for Post in RHA

® A linear term over X is a linear combination of the
variables in X with integer coefficients.

ex : 3x+2y-1.

® A linear formula over X is a boolean combination of
inequalities between linear terms over X,

ex :3x+2y-1=0 A y=5.

® Given a linear formula P, we write [\P] for the set of
valuations v such that v = .

Tuesday 9 March 2010

Effective procedure for Post in RHA

® |f we allow quantifiers with linear formulas we obtain
the theory of reals with addition T(R,0, |,+,<).

This theory allows for quantifier elimination.

ex:“Vyey =5 — xty = 7”7 is equivalent to “x=2".

® A symbolic region of H is a finite set

{ (LY) | | € Loc } where [YiICInv(])].

Tuesday 9 March 2010

Effective procedure for Post in RHA

Given a location leLoc and a set of valuations VC[X—R] such that
Vclnv(l), the forward time closure, noted V) is the set of valuations

of variables in X that are reachable from some valuation veV by
letting time pass.

This set is defined as follows:

V)" is the set of valuation v’e [X—R] such that

JveV ¢ 3teR >0 » vxeXe

v(x)+txInf([Flow()](x)) < V(x) < v(x)+txSup([Flow(l)](x))
and v’ (x)e[Inv(l)].

As quantifiers can be eliminated, the resulting formula is a boolean
combination of linear constraints.

Tuesday 9 March 2010

An example of time elapsing

Assume x'=[1,2] and y*=|

/ d={ (xy) | xe[l4]
A YE[1,6]
AYy=-2x+5 A ...}

An example of time elapsing

Assume x'=[1,2] and y*=|

An example of time elapsing

Assume x'=[1,2] and y'=1 .-~

Y

‘4
-
L
'4
l 4

Tuesday 9 March 2010

An example of time elapsing

Assume x'=[1,2] and y'=|I

An example of time elapsing

Assume x'=[1,2] and y'=|I

L ocation invariant

An example of time elapsing

Assume x'=[1,2] and y*=|

An example of discrete step

Assume a transition
with guard x<5 and
Y reset of y to zero.

Tuesday 9 March 2010

An example of discrete step

< »
— Assume a transition
R \ with guard x<5 and
—
Y - reset of y to zero.
—
—
—
—
a—
a—
—
P ——
—
—
—
e — >
X

Tuesday 9 March 2010

An example of discrete step

Assume a transition
with guard x<5 and
Y reset of y to zero.

/

Tuesday 9 March 2010

An example of discrete step

Assume a transition
with guard x<5 and
reset of y to zero.

X

Tuesday 9 March 2010

An example of discrete step

Assume a transition
with guard x<5 and
)4 reset of y to zero.

Tuesday 9 March 2010

An example of discrete step

Assume a transition

with guard x<5 and
reset of y to zero.

Tuesday 9 March 2010

Forward reachability analysis

Continuous evolution (time

passing)

v

Tuesday 9 March 2010

Forward reachability analysis

<

Tuesday 9 March 2010

Forward reachability analysis

Tuesday 9 March 2010

Forward reachability analysis

Tuesday 9 March 2010

Forward reachability analysis

Parameter values
that lead to an
error

Tuesday 9 March 2010

Forward reachability analysis

Tuesday 9 March 2010

Forward reachability analysis

Here, all sets are
representable by linear
formulas i.e., finite sets of
polyhedra.

Tuesday 9 March 2010

Undecidability

Nevetheless...

Theorem. The reachability problem for rectangular hybrid automata is
undecidable.

Proof (sketch). By simulation of two counter machines for which the
halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction j: €1:=c;+1; goto k;

=0 z=| A Z=0

assume
v(xi)=val(c)
v(x2)=val(c2)

Tuesday 9 March 2010

Initialized RHA

® A RHA is initialized if for all discrete jumps (l1,G,l2), for all
variables xeX:

® cither the flow constraints on x in |} and |, are identical

® or variable x is updated during the discrete jump from || to b

Tuesday 9 March 2010

Initialized RHA

® A RHA is initialized if for all discrete jumps (l1,G,l2), for all
variables xeX:

® cither the flow constraints on x in |} and |, are identical

® or variable x is updated during the discrete jump from || to b

z=| A Z=0

is not initialiazed

Tuesday 9 March 2010

Initialized RHA

® A RHA is initialized if for all discrete jumps (l1,G,l2), for all
variables xeX:

® cither the flow constraints on x in |} and |, are identical

® or variable x is updated during the discrete jump from || to b

z=| A Z=0

is initialiazed

Tuesday 9 March 2010

Initialized RHA

® A RHA is initialized if for all discrete jumps (l1,G,l2), for all
variables xeX:

® cither the flow constraints on x in |} and |, are identical

® or variable x is updated during the discrete jump from || to b

z=1 A Z=0 A X" € [2,3]
>

is initialiazed

Tuesday 9 March 2010

Initialized RHA

® A RHA is initialized if for all discrete jumps (l1,G,l2), for all
variables xeX:

® cither the flow constraints on x in |} and |, are identical

® or variable x is updated during the discrete jump from || to b

Theorem. The reachability problem (and LTL model-checking

problem) is decidable for the class of initialized rectangular
automata.

Note that Initialized RHA generalizes timed automata.

Tuesday 9 March 2010

Approximating
affine hybrid automata by
rectangular hybrid automata

Rectangular approximations

Approximate complex dynamics with rectangular
dynamics in a systematic way;

.. this allow us to use PhaVer or Hytech for
example.

In practice, those approximations are often precise

enough to infer important properties of the original
HA.

.. this is related to abstract interpretation.

Tuesday 9 March 2010

Rectangular approximations

For each control mode we partition the space into rectangular
regions;

Within each region, the flow field is over-approximated using
rectangular flows.

Those approximations can often be obtained automatically by
computing lower and upper bounds on derivatives within

rectangular regions.

The approximations can be made arbitrarily precise by
approximating over suitably small regions of the state space.

Tuesday 9 March 2010

An example

20 < x < 100 20£l£100
4 N\ a N
t1 & =K(h—x) | tl T E- -
_ A _ N
tooX]

Maxxep20,100) K(h-x) = K(h-20) = 0.075(150-20) = 9.75 <10
Minxep0,100) K(h-x) = K(h-100) = 0.075(150-100) = 3.75 = 3

Tuesday 9 March 2010

An example

® Applying this computation for each location, we get the
following rectangular approximation of the tank:

C,J::QOJ\J:":J:

x = 20 20 < 2 <100

Tuesday 9 March 2010

Over-approximations and correctness

Let us note RectOver(H) the rectangular
overapproximation obtained using the previous method;

RectOver(H) is a over-approximaiton of the original
system in the following formal sense:

Pathr([H]) ¢ Pathg([RectOver(H)I)

Transfert of correctness from overapproximations:

if Pathg([RectOver(H)])nBadPaths=9o
then Pathg([H])nBadPaths=2

Tuesday 9 March 2010

Over-approximations and false negatives

® When over-approximating the behavior of a system, we

face the possibility to get false negatives during
verification;

® |ndeed, the set of behaviors of the over-approximation is
a superset of the behaviors of the original system...

® _..so if we have that
Pathr([RectOver(H)])nBadPaths+o
it is not nessarily the case that

Pathr([H])nBadPaths+J

Tuesday 9 March 2010

Candidate counter examples

® A path A=soTos|T|...Tn-1Sn is an candidate counter example if

® A e [OverRect(H)] n BadPaths

® When facing a candidate counter example, we check if the
counter example is realizable in the original model, so we
ask:

o A\<'[H]

This test is possible for larger class than rectangular
automata, i.e. affine/polynomial hybrid automata.

e If Ae[H], then we have found a real counter example i.e., the
a Bad path in the original HA H.

Tuesday 9 March 2010

Spurious counter-examples

® If Ag[H], then A is a spurious counter example i.e.:

® A c [OverRect(H)] n BadPaths
o A¢[H]

® |n this case, we must refine OverRect(H) in order
to eliminate the counter example.

® There is a large research effort in the CAV
community on the so-called counter-example
based abstraction refinement, and variants.

Tuesday 9 March 2010

Abstraction refinement

® |n presence of spurious counter examples, we refine the
rectangular approximation by splitting locations to
decorate them with smaller rectangular regions.

La’s € 4, 8] OFF
20 < = < 100 20 < x < 100 I oN
9 <zx <91
4) 4 N -
€ X=X
b | &= Kh—a) - t1 | £ €[3,10] — 20 <z < 55 t11
4)
N
_ S _ A | o
F % X % & € |7,10]
\
ON
- J
ON, 2’ =z

from t4

Tuesday 9 March 2010

10 2

B, =100A2" =u

t1.1
1O t;_;
OFF °C
1004
ON Yo 3
95 <o < 100
10 fa c
I 91 <2 <95 t 20

B,y = 100M2 = a

1

60 -

{rom £,

20

1o

OFF time

ON, 2" =u

from £,

Tuesday 9 March 2010

10 2

B, =100A2" =u

OFF °C

ON Yo 3
95 < <100

10 fa c

B,y = 100M2 = a

1

{rom £,

1o

OFF time

ON, 2" =u

from £,

Tuesday 9 March 2010

Conclusion

Conclusion

We have defined the syntax and semantics of hybrid
automata ...

... shown how to use them to model compositionally a
hybrid system ...

... shown how to formalize safety requirements using
monitors ...

... recalled the main ingredients for safety and reachability
analysis ...

... introduced the subclasses of rectangular hybrid
automata and initialized RHA ...

... shown how to over-approximate complex hybrid
automata using RHA.

Tuesday 9 March 2010

Bibliography

See written notes !

