
Temporal logics and

explicit-state model checking

Pierre Wolper
Université de Liège

1

Topics to be covered

• Introducing explicit-state model checking

• Finite automata on infinite words

• Temporal Logics and their relation to automata

• Algorithms for explicit-state model checking

2

Introducing explicit-state model checking

• The system to be verified is modelled as a finite-state transition
system, which is computed from the program describing the system.

• One explores this transition system state-by-state in order to check
that it has the required properties:

– simple state properties such as reachability,

– properties of sequences of states expressed in a specification
language: temporal logic.

• In practice, one needs to compute the reachable states of this
transition system.

• To obtain good algorithms one proceeds by reducing the problem to a
pure state reachability problem. For this, the temporal logic
specifications are converted to finite automata.

3

Automata on infinite words: motivation

• Infinite behaviors play an important role in the analysis of reactive

systems.

• Transition systems generating or recognizing infinite behaviors are

useful in the analysis of reactive systems (fairness conditions and

liveness properties).

• There exists a rich theory for such transition systems with a finite

number of states: the theory of finite-automata on infinite words.

• In this theory, the objects recognized by the automata are infinite

words defined over a finite alphabet.

4

Words and Automata

• A finite word of length n over an alphabet Σ is a mapping

w : {0, . . . n− 1} → Σ

• An automaton on finite words is a description of a set of finite words

(those that it accepts).

• An infinite word (ω-word) over an alphabet Σ is a mapping w : N→ Σ

• An automaton on infinite words is a description of a set of infinite

words (those that it accepts).

Note: Automata are often introduced as a model of computation. Here,

we will just view them as a description of a set of words.

5

Automata on Infinite Words

Same structure as automata on finite words:

A = {Σ, S, δ, S0, F} where

• Σ is an alphabet,

• S is a set of states,

• δ : S ×Σ→ S (deterministic) or δ : S ×Σ→ 2S (nondeterministic) is a

transition function,

• S0 ⊆ S is a set of initial states, and

• F ⊆ S is a set of accepting states.

What changes is the semantics.

6

When does an Automaton accept a Word?

From now on, we consider the more general case of nondeterministic
automata.

Finite words w : {0, . . . n− 1} → Σ

The word w is accepted by the automaton if there is a labeling of the
word by states

ρ : {0, . . . n} → S

such that

• ρ(0) ∈ S0 (the initial label is an initial state),

• ∀0 ≤ i ≤ n− 1, ρ(i+ 1) ∈ δ(w(i), ρ(i)) (the labeling is compatible with
the transition relation),

• ρ(n) ∈ F (the last label is an accepting state).

Don’t think of automata as programs, but as a formalism for defining sets
of words that has a very simple semantics.

7

Infinite words w : N→ Σ

The word w is accepted by the automaton if there is a labeling of the

word by states

ρ : N→ S

such that

• ρ(0) ∈ S0 (the initial label is an initial state),

• ∀0 ≤ i, ρ(i+ 1) ∈ δ(w(i), ρ(i)) (the labeling is compatible with the

transition relation),

• inf(ρ) ∩ F 6= ∅ where inf(ρ) is the set of states that appear infinitely

often in ρ (the set of repeating states intersects F).

8

Examples

s0&%
'$
"!

>

a, b

All words over Σ = {a, b}

s0&%
'$
>

a

s1&%
'$
"!

a, b

q

b

An automaton accepting a?b(a ∪ b)ω

9

s0&%
'$
>

a

s1&%
'$
"!

b

q

b

i

a

All words containing b infinitely often

s0&%
'$
>

a, b

s1&%
'$
"!
q

a

i

b

Infinitely often ab

10

Other types of Acceptance conditions

Büchi: F ⊆ S,
inf(ρ) ∩ F 6= ∅.

Generalized Büchi: F ⊆ 2S,
i.e. F = {F1, . . . , Fm}
For each Fi, inf(ρ) ∩ Fi 6= ∅.

Rabin: F ⊆ 2S × 2S,
i.e. F = {(G1, B1), (G2, B2), . . . , (Gm, Bm)}
For some pair (Gi, Bi) ∈ F , inf(ρ) ∩Gi 6= ∅ and inf(ρ) ∩Bi = ∅

For nondeterministic automata, all define the ω-regular languages :⋃
i

αiβ
ω
i

where αi and βi are finite-word regular languages and ω denotes infinite
repetition.

For deterministic automata, Büchi and Generalized Büchi conditions are
weaker.

11

Properties of Büchi Automata

• Closed under union, intersection, projection, and complementation.

• Nonemptiness easy to decide:

– Check if some accepting state is accessible from an initial state and

(nontrivially) from itself.

– Linear time (compute the strongly connected components).

– NLOGSPACE.

• For Rabin conditions, nonemptiness can also be decided in polynomial

time. The simplest algorithms involve a translation to

nondeterministic Büchi automata.

• For Street automata, the translation to nondeterministic Büchi

automata is exponential.

12

Closure under Union

Given A1 = (Σ, S1, δ1, S01, F1) and

A2 = (Σ, S2, δ2, S02, F2),

the automaton A = {Σ, S, δ, S0, F} where

• S = S1 ∪ S2, S0 = S01 ∪ S02, F = F1 ∪ F2,

• t ∈ δ(s, a) if

{
either t ∈ δ1(s, a) and s ∈ S1,
or t ∈ δ2(s, a) and s ∈ S2.

accepts L(A1) ∪ L(A2).

13

Closure under Intersection

Given A1 = (Σ, S1, δ1, S01, F1)

and A2 = (Σ, S2, δ2, S02, F2),

The generalized Büchi automaton and A = {Σ, S, δ, S0,F} where

• S = S1 × S2, S0 = S01 × S02,

• F = {F1 × S2, S1 × F2},

• (u, v) ∈ δ((s, t), a) if u ∈ δ1(s, a) and v ∈ δ2(t, a).

accepts the language L(A1) ∩ L(A2).

Projection is also simple, but complementation is completely nontrivial

(the Rabin-Scott subset construction is not sufficient!).

14

Example:
Failure of the Rabin-Scott Construction

s0&%
'$
>

a

s1&%
'$
"!

b

q

a

i

b

A simple Büchi Automaton

s0&%
'$

> so,s1&%
'$

a, b

-
a

The Rabin-Scott construction applied to the automaton above

15

From Generalized Büchi to Büchi

Given A = (Σ, S, δ, S0,F),

where F = {F1, . . . , Fk},

A′ = (Σ, S′, δ′, S′0, F
′) where

• S′ = S × {1, . . . , k}.

• S′0 = S0 × {1}.

• δ′ is defined by (t, i) ∈ δ′((s, j), a) if

t ∈ δ(s, a) and

{
i = j if s 6∈ Fj,
i = (j mod k) + 1 if s ∈ Fj.

• F ′ = F1 × {1}.

accepts L(A).

16

s0&%
'$
"!

> 1

a

s1&%
'$
"!

2

b

q

b

i

a
A generalized Büchi automaton

17

s0,1&%
'$
"!

> s1,1&%
'$

b

)

a

s0,2&%
'$

M

a

s1,2&%
'$
1

b

?

a

6

b

HH
HH

H
HH

H
HH

H
HH

H
HH

H
HH

H
HH

H
HH

HY

a

HHH
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHj

b

From generalized Büchi to Büchi

18

Temporal Logics and their

Relation to Automata

19

A Language for Writing Specifications:
Temporal Logic

• Language for describing properties of infinite sequences,

• Extension of propositional logic (or first-order logic),

• Uses Temporal Operators to describe temporal (sequencing)

properties.

20

Temporal Logic:
Interpretations

• Temporal logic is interpreted on sequences of states:

&%
'$

-

&%
'$

-

&%
'$

-

&%
'$

-

&%
'$

-

• each state in the sequence gives a truth value to atomic propositions,

• a formula is given a meaning in a state (world, interpretation) of a

sequence,

• temporal operators indicates in which states the formula (or parts

thereof) should be interpreted.

21

Temporal Operators

1. © which is read “at the next time” (in the next state of the sequence)

2. 2 which is read “always in the future” (in all future states of the

sequence)

3. 3 which is read “eventually” (in some future state of the sequence)

4. U which is read “until” (binary operator)

5. Ũ which is read “releases” (binary operator)

22

Examples

In the marked state of the sequence

&%
'$

p, q

-

&%
'$

¬p,¬q

-

&%
'$

¬p, q

-

&%
'$

¬p, q

∨
-

&%
'$

p, q

-

the following formulas are true:

¬p ∧ q

©(p ∧ q)

the following formula is false:

2 p

23

More Examples

• 2(p ⊃ © q) is satisfied by all sequences in which each state where p is

true is immediately followed by a state in which q is true.

• 2(p ⊃ ©(¬q U r)) is satisfied by all sequences such that if p is true in a

state, then q remains false from the next state on and until the first

state where r is true, which must occur.

• The formula 2 3 p is satisfied by all sequences in which p is true

infinitely often in the future

• The formula p Ũ q is satisfied by all sequences in which q is always true

unless this obligation is released by p being true in a previous state.

24

Formal Syntax of
Temporal Logic

The formulas of linear-time temporal logic (LTL) built from a set of

atomic propositions P are the following.

• true, false, p, or ¬p, for all p ∈ P ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas;

• ©ϕ1, ϕ1U ϕ2, or ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are LTL formulas.

Two operators are then defined as abbreviations:

• 3ϕ = trueU ϕ (“eventually”).

• 2ϕ = false Ũ ϕ (“always”).

25

Semantics of Temporal Logic

The semantics of LTL is defined with respect to paths π : N→ 2P . For a

path π, πi represents the suffix of π obtained by removing its i first states,

i.e. πi(j) = π(i+ j). The rules given the truth of a formula in the first

state of a path π are the following.

• For all π, we have π |= true and π 6|= false.

• π |= p for p ∈ P iff p ∈ π(0).

• π |= ¬p for p ∈ P iff p 6∈ π(0).

• π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2.

• π |= ϕ1 ∨ ϕ2 iff π |= ϕ1 or π |= ϕ2.

• π |= ©ϕ1 iff π1 |= ϕ1.

• π |= ϕ1U ϕ2 iff there exists i ≥ 0 such that πi |= ϕ2 and for all

0 ≤ j < i, we have πj |= ϕ1.

• π |= ϕ1 Ũ ϕ2 iff for all i ≥ 0 such that πi 6|= ϕ2, there exists 0 ≤ j < i

such that πj |= ϕ1.

26

In the logic we have defined, negation is only applied to atomic

propositions. This restriction can be lifted with the help of the following

relations

π 6|= ϕ1U ϕ2 iff π |= (¬ϕ1) Ũ(¬ϕ2)

π 6|= ϕ1 Ũ ϕ2 iff π |= (¬ϕ1)U(¬ϕ2)

π 6|= ©ϕ1 iff π |= ©¬ϕ1

A linear time temporal logic formula is a description of a set of infinite

sequences (those that satisfy it)

27

From LTL to Automata

Given a LTL formula ϕ built from a set of atomic propositions P ,

construct an automaton on infinite words over the alphabet 2P that

accepts exactly the infinite sequences satisfying ϕ.

Example:

s0&%
'$
>

∅

s1&%
'$
"!

∅, {p}

q

{p}

An automaton for 3 p

28

Idea of the Construction

To determine if a sequence π : N→ 2P satisfies a formula ϕ, one can

proceed by labeling it with subformulas of ϕ in a way that is compatible

with LTL semantics. The subformulas of ϕ are the closure of ϕ (cl(ϕ)).

• ϕ ∈ cl(ϕ),

• ϕ1 ∧ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),

• ϕ1 ∨ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),

• ©ϕ1 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ),

• ϕ1U ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ).

• ϕ1 Ũ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ).

cl(3¬p) = {3¬p,¬p}

29

What are the labeling rules?

For every position i ≥ 0 the labeling τ : N→ 2cl(ϕ) has to satisfy the

following:

• For p ∈ P , if p ∈ τ(i) then p ∈ π(i), and if ¬p ∈ τ(i) then p 6∈ π(i)

• if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i).

• if ϕ1 ∨ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i).

This takes care of propositions and boolean connectives. What about the

temporal operators?

30

Labeling Rules for Temporal Operators

Even though the temporal operators, have a semantics that looks at the

whole sequence, it can (mostly) be reduced to local conditions.

pU q ≡ (q ∨ (p ∧©(pU q)))
p Ũ q ≡ (q ∧ (p ∨©(p Ũ q)))

We thus add the following labeling rules for all positions i ≥ 0:

• if ©ϕ1 ∈ τ(i) then ϕ1 ∈ τ(i+ 1).

• if ϕ1U ϕ2 ∈ τ(i) then either ϕ2 ∈ τ(i), or ϕ1 ∈ τ(i) and

ϕ1U ϕ2 ∈ τ(i+ 1).

• if ϕ1 Ũ ϕ2 ∈ τ(i) then ϕ2 ∈ τ(i), and either ϕ1 ∈ τ(i) or

ϕ1 Ũ ϕ2 ∈ τ(i+ 1)

31

There is only one missing condition that concerns formulas called

eventualities

(ϕ1U ϕ2) ≡ ϕ1 ∧ (ϕ2 ∨©(ϕ1U ϕ2))

ϕ2, has to be true at some point!

32

Interpreting Labelings

A sequence π satisfies a formula ϕ if one can find a labeling τ satisfying

• The conditions above,

• ϕ ∈ τ(0), and

• If an eventuality formula ϕ1U ϕ2 is in τ(i), then for some j ≥ i,
ϕ2 ∈ τ(j).

An automaton on infinite words is just a labeling rule. Actually, we have

defined an automaton on infinite words that accepts the models of a

temporal logic formula!

33

The Automaton

It is a generalized Büchi automaton

Aϕ = (Σ, S, δ, S0,F) where

• Σ = 2P ,

• The set of states S is the set of possible labels, i.e. the subsets s of

2cl(ϕ) that satisfy

– if ϕ1 ∧ ϕ2 ∈ s then ϕ1 ∈ s and ϕ2 ∈ s.

– if ϕ1 ∨ ϕ2 ∈ s then ϕ1 ∈ s or ϕ2 ∈ s.

34

• The transition function δ checks that the propositional labeling

matches the one in the sequence being considered and that the rules

for the temporal operators are satisfied. Thus, t ∈ δ(s, a) iff

– For all p ∈ P , if p ∈ s then p ∈ a.

– For all p ∈ P , if ¬p ∈ s then p 6∈ a.

– if ©ϕ1 ∈ s then ϕ1 ∈ t.

– if ϕ1U ϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1U ϕ2 ∈ t.

– if ϕ1 Ũ ϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1 Ũ ϕ2 ∈ t.

• The initial states are those that contain ϕ, S0 = {s ∈ S | ϕ ∈ s}.

35

• For the accepting condition, we need to impose that, for every

eventuality formula ϕ1U ϕ
′ ≡ e(ϕ′) ∈ cl(ϕ), any state that contains that

formula is followed by a state that contains ϕ′.

– We have the property that, from every state in which e(ϕ′) appears,

the transition relation ensures that this formula keeps appearing

until the first state in which ϕ′ appears.

– It is thus sufficient to require that, for every eventuality e(ϕ′), one

goes infinitely often either through a state in which it does not

appear, or through a state in which the eventuality and ϕ′ both

appear.

– The acceptance condition is thus a generalized Büchi condition. If

the eventualities are e1(ϕ1), . . . em(ϕm), it is F = {Φ1, . . . ,Φm}
where Φi = {s ∈ S | ei, ϕi ∈ s ∨ ei 6∈ s}.

36

Example

The automaton for 3 p

3 p
p &%
'$

1 < 3 p&%
'$

2>

p, ∅

i

p, ∅

p 3&%
'$

p

M

∅&%
'$

4

p, ∅

M
i

p, ∅

-

p

?

p

H
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHHHj

p

F = {{1,3,4}}

Note: Transitions leading to states with more (nonatomic) elements of

the closure than necessary were not included.

37

Improvements to the Construction

• Build the automaton incrementally from the formula ϕ by

decomposing and expanding the temporal operators.

• Merge states which only differ by atomic propositions since these are

determined by the labels of the transitions.

• When possible, detect inconsistent nodes without fully expanding to

the propositional level.

38

Branching Time Temporal Logic

Branching time temporal logic are interpreted over infinite trees (varying

degree) in which each node is a state assigning truth values to the atomic

propositions.

More generally, branching time temporal logic is interpreted over Kripke

structures K = 〈P,W,R,w0, L〉, where

• P is a set of atomic propositions,

• W is a set of states,

• R ⊆W ×W is a transition relation that must be total (i.e., for every

w ∈W there exists w′ ∈W such that 〈w,w′〉 ∈ R),

• w0 is an initial state, and

• L : W → 2P maps each state to the set of atomic propositions true in

that state.

39

From a state of a Kripke structure leave a number of paths, i.e. infinite

sequence of states, π = w0, w1, . . . such that for every i ≥ 0, 〈wi, wi+1〉 ∈ R.

Note that by identifying π(i) with L(wi), a path in a Kripke structure

defines an LTL interpretation.

Example

p>&%
'$

q&%
'$q

i

40

Path Quantifiers

Branching-time temporal logic is linear-time temporal logic extended with
path quantifiers:

• A for all paths,

• E for some paths.

Path quantifiers are applied to linear-time formulas which then become
state formulas and can be used as atoms in a new path formula.

Examples

A2 p, E 2 p, A(p ⊃ ©E 2 p), A2E© p, A(2 3 p), E(2 3 p), E 2E3 p.

¬p&%
'$

- p&%
'$

- ¬p&%
'$

41

Formal Syntax of
Branching-time Temporal Logic

Syntax
We first define the more general logic CTL∗. A CTL∗ state formula is
either:

• true, false, p, or ¬p, for all p ∈ P ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are CTL∗ state formulas;

• Aψ or Eψ, where ψ is a CTL∗ path formula.

A CTL∗ path formula is either:

• A CTL∗ state formula;

• ψ1 ∧ ψ2, ψ1 ∨ ψ2, ©ψ1, ψ1Uψ2, or ψ1 Ũ ψ2, where ψ1 and ψ2 are CTL∗

path formulas.

CTL∗ is the set of state formulas generated by the above rules.

42

A restricted form of
Branching-time Temporal Logic

The logic CTL is a restricted subset of CTL∗ in which the temporal

operators must be immediately preceded by a path quantifier.

Formally, it is the subset of CTL∗ obtained by defining the path formulas

as follows.

A CTL path formula is of the form

• ©ϕ1, ϕ1U ϕ2, or ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are CTL state formulas.

Examples

• CTL formulas: A2 p, E 2 p, A2E© p, E 2E3 p.

• CTL∗ formulas: A(p ⊃ ©E 2 p), A(2 3 p), E(2 3 p).

43

Semantics

Given a Kripke structure K = 〈P,W,R,w0, L〉, the truth of a CTL∗ formula

in a state w is defined as follows.

• For all w, we have w |= true and w 6|= false.

• w |= p for p ∈ P iff p ∈ L(w).

• w |= ¬p for p ∈ P iff p 6∈ L(w).

• w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.

• w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.

• w |= Aψ iff for every path π = w0, w1, . . ., with w0 = w, we have π |= ψ.

• w |= Eψ iff there exists a path π = w0, w1, . . ., with w0 = w, such that

π |= ψ.

44

• π |= ϕ for a state formula ϕ, iff w0 |= ϕ where π = w0, w1, . . .

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.

• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.

• π |= ©ψ iff π1 |= ψ.

• π |= ψ1U ψ2 iff there exists i ≥ 0 such that πi |= ψ2 and for all

0 ≤ j < i, we have πj |= ψ1.

• π |= ψ1 Ũ ψ2 iff for all i ≥ 0 such that πi 6|= ψ2, there exists 0 ≤ j < i

such that πj |= ψ1.

45

Algorithms for explicit-state

model checking

46

The Verification Approach

• The central part of the verification process is to compute the

transition system corresponding to the Formal Concurrent System to

be analyzed.

• In practice, one needs to compute the reachable states of this

transition system.

• One can then check properties by examing this transition systems, e.g.

the reachability of a given state, the absence of deadlocks, other

properties of all reachable states . . .

• The main problem is that the transition system can be extremely

large. One thus needs techniques to optimize the computation of its

reachable states.

47

Computing the Reachable States of a System:
Depth-First Search

The following algorithm computes the transition system ST = {Σ, S, s0, T}
corresponding to a formal concurrent system FCS = {P,M, T }.

This algorithm uses a stack (Stack) and a data structure H used to

memorize the set of visited states. This structure is usually a hash table.

The function enabled(s) returns the transitions of T that are enabled in a

state s ∈ S. The function succ(s, t) where s ∈ S and t ∈ T returns the

state s′ such that (s, n(t), s′) ∈ T

48

procedure DFS()

begin

s := top(Stack);

Tr := enabled(s)

for all t ∈ Tr
begin

s′ := succ(s, t)

if s′ 6∈ H then

begin

insert s′ in H;

push s′ onto Stack;

DFS();

end

end

pop(Stack);

end

Stack := [s0]; H := {s0};
DFS();

49

Using Depth-First Search

• The depth-first algorithm makes it possible to check properties of the

reachable states: invariants, reachability of a state with a given

property, absence of deadlock, . . .

• If an erroneous state is reached, the stack contains an execution trace

that makes this state reachable. This is very helpful for understanding

why such a state can be reached.

• By adding an observer process, more elaborate properties can be

checked and in particular properties expressed in linear-time temporal

logic.

• When performing the depth-first search, the transition relation need

not be stored. One refers to this by saying the verification is done

on-the-fly (while exploring the transition system)

50

Checking Linear-Time Temporal Logic Properties

• To check that a transition system satisfies a linear-time temporal logic

property, one needs to check that all its infinite behaviors satisfy this

property.

• One checks that all these behaviors are models of the property. This

procedure is thus called model-checking.

• To obtain a model checking procedure, the idea is to use the

automaton on infinite words for the property as an observer for the

system.

• However, this automaton is nondeterministic and it accepts a behavior

is there exists some computation for which it accepts.

• Checking that for all behaviors of the transition system, there exists

some accepting computation of the observer is problematic.

• The trick is to first complement the property to be checked.

51

A Model-Checking Algorithm for LTL

• One is given a formal concurrent system FCS and a LTL property f .

• The first step is to build an automaton on infinite words A¬f that

accepts exactly all infinite sequences that do not satisfy f .

• A¬f is then added as an observer to FCS. If needed, observers for the

necessary fairness conditions are added.

• The corresponding transition system is then computed by a depth-first

search. It is a transition system with a generalized Büchi acceptance

condition.

52

• One then checks whether this transition system is empty of not

(accepts at least one infinite word). Any accepted infinite word is a

behavior of the system that does not satisfy the property to be

checked.

• Remaining problem: how does one check emptiness of a Generalized

Büchi automaton by a depth-first search, i.e. without applying the

more complicated strongly connected components algorithm?

Complexity of LTL Model Checking:

Linear in the size of the transition system (NLOGSPACE),

Exponential in the size of the FCS (PSPACE),

Exponential in the size of the LTL property (PSPACE).

53

A Simple Case for Model-Checking :
Safety Properties

• Imagine a property f is such that the corresponding automaton has an

empty acceptance condition. This should make model checking

simpler.

• No acceptance condition, means that the only way a word cannot be

accepted is by reaching a situation in which no transition is possible.

• Furthermore, since there is no acceptance condition, the Rabin-Scott

subset construction can be used to determinize and complement such

an automaton on infinite words.

54

• The complement automaton would then have a single accepting state

from which all behaviors are accepted. Once this state is reached, the

word is accepted whatever happens next. The automaton for ¬f is

thus really an automaton on finite-words.

• This has two consequences on the algorithmic aspects of checking

safety properties:

– Fairness conditions are not necessary.

– The emptiness test is a simple reachability test.

55

Safety Properties:
An Abstract Definition

• We work in the context in which a property is a set of infinite words
over an alphabet Σ.

• A property P is thus a set P ⊆ Σω.

• Given two words w1, w2 ∈ Σω, let lcp(w1, w2) denote the length of their
longest common prefix. Define then the distance between two words
w1, w2 ∈ Σω as

d(w1, w2) =
1

lcp(w1, w2) + 1

This distance induces a topology on Σω.

• An open set O is one in which each element is surrounded by a
neighborhood that is in the set:

if w ∈ O, then ∃ε∀w′[d(w,w′) ≤ ε ⊃ w′ ∈ O]

• A closed set is the complement of an open set. Note that a closed set
contains the limit of its converging sequences of words.

• A safety property is a closed subset of Σω.

56

Another Particular Class of Properties: Liveness
Properties

• An automaton without an accepting condition defines a safety

property. What class of properties is defined by automata that “only

have an accepting condition”?

• Formally, a language L is in this class if it satisfies

(∀w ∈ Σ∗)(∃w′ ∈ Σω)ww′ ∈ L

• Topologically, a property L ⊆ Σω is a liveness property if it is a dense

set:

(∀w ∈ Σω)∀ε(∃w′ ∈ L)d(w,w′) ≤ ε

• It is possible to prove that every property is the intersection of a

liveness and of a safety property.

57

Checking the Nonemptiness of

(Generalized) Büchi Automata
With a Depth-First Search

• A Büchi automaton accepts if some state in F is reachable from the

initial state and from itself by a path of length ≥ 1 (For generalized

Büchi automata, convert to Büchi).

• To check that it is nonempty, proceed as follows.

1. Do a depth-first search of the reachable states.

2. When doing this search, build a postorder list of reachable

accepting states. Let this list be

Q = f1, . . . , fk

where f1 is the first postorder reachable accepting state and fk is

the last.

3. Do a second depth-first search from the elements in Q.

58

The Second Search

1. Start the search from f1.

2. Once the search from fi is finished (fi reached or no more reachable

nodes) :

(a) Restart the search from fi+1, but

(b) do not reconsider nodes that have been visited during searches

from fj, j ≤ i.

3. Each node in the graph is only visited once.

Note that the first and second search can be interleaved.

59

Why Does it Work?

1. If fi is reachable from fj, where fj appears before fi in postorder, then

fj is reachable from itself.

- In postorder, the ancestors of a node separate the nodes preceding

that node from the nodes following it.

- Thus a path from a node A to a node following A in postorder

must go through an ancestor of A and A is reachable form itself.

2. So, for the first fi reachable from itself, the path p from fi to itself

cannot contain any node reachable from a previous fj (if it did, there

would be a path from fj to fi and fj would be reachable from itself)

60

f1

f2

f3

f4

f5

61

Algorithms for Checking

Temporal Logic Properties

(Branching Time)

62

The Logic CTL

Recall that CTL is the branching-time temporal logic whose formulas are

defined as follows.

A CTL state formula is either:

• true, false, p, or ¬p, for all p ∈ P ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are CTL state formulas;

• Aψ or Eψ, where ψ is a CTL path formula.

A CTL path formula is of the form

• ©ϕ1, ϕ1U ϕ2, or ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are CTL state formulas.

Examples

A2 p, E 2 p, A2E© p, E 2E3 p, A(E(2 p) Ũ A(q U p)).

63

Branching-Time Model Checking
The Problem

• One is given a finite transition system obtained from a concurrent
program, i.e a finite Kripke structures K = 〈P,W,R,w0, L〉, where

– P is a set of atomic propositions,

– W is a set of states,

– R ⊆W ×W is a transition relation that must be total (i.e., for every w ∈W there
exists w′ ∈W such that 〈w,w′〉 ∈ R),

– w0 is an initial state, and

– L : W → 2P maps each state to the set of atomic propositions true in that state.

• One is also given a CTL formula ϕ.

• The model-checking problem is to check that K satisfies (is a model
of) ϕ.

• Note that in contrast to the linear-time case where there was an
implicit “for all behaviors” quantification in the definition of the
model-checking problem, there is no implicit quantification in the
branching-time model-checking problem.

64

A First Approach

The problem can be solved by checking if the initial state w0 of the Kripke

structure can be labeled by ϕ while respecting the semantic rules of the

logic. Formally, one checks whether there is a labeling τ : W → cl(ϕ) such

that the following rules are satisfied.

• ϕ ∈ τ(w0)

• For p ∈ P , if p ∈ τ(w) then p ∈ L(w), and if ¬p ∈ τ(w) then p 6∈ L(w)

• if ϕ1 ∧ ϕ2 ∈ τ(w) then ϕ1 ∈ τ(w) and ϕ2 ∈ τ(w).

• if ϕ1 ∨ ϕ2 ∈ τ(w) then ϕ1 ∈ τ(w) or ϕ2 ∈ τ(w).

65

• if A©ϕ1 ∈ τ(w) then for all w′ such that (w,w′) ∈ R, ϕ1 ∈ τ(w′).

• if E©ϕ1 ∈ τ(w) then for some w′ such that (w,w′) ∈ R, ϕ1 ∈ τ(w′).

• if A(ϕ1U ϕ2) ∈ τ(w) then either ϕ2 ∈ τ(w), or ϕ1 ∈ τ(w) and for all w′

such that (w,w′) ∈ R A(ϕ1U ϕ2) ∈ τ(w′).

• if E(ϕ1U ϕ2) ∈ τ(w) then either ϕ2 ∈ τ(w), or ϕ1 ∈ τ(w) and for some

w′ such that (w,w′) ∈ R E(ϕ1U ϕ2) ∈ τ(w′).

• if A(ϕ1 Ũ ϕ2) ∈ τ(w) then ϕ2 ∈ τ(w), and either ϕ1 ∈ τ(w) or for all w′

such that (w,w′) ∈ R A(ϕ1 Ũ ϕ2) ∈ τ(w′)

• if E(ϕ1 Ũ ϕ2) ∈ τ(w) then ϕ2 ∈ τ(w), and either ϕ1 ∈ τ(w) or for some

w′ such that (w,w′) ∈ R E(ϕ1 Ũ ϕ2) ∈ τ(w′)

Furthermore, to these rules we need to add the fact that the eventualities

are satisfied.

66

Turning the Approach into an Algorithm

To turn the labeling rules above into an algorithm, we proceeed by

labeling the structure with elements of the closure in an order compatible

with the “subformula” order, starting with the innermost subformulas

(i.e., the atomic or negated atomic propositions).

The general structure of the algorithm is thus the following.

1. Pick an formula ϕi ∈ cl(ϕ) all subformulas of which have already been

processed (initially this can only be an atomic or negated atomic

proposition).

2. For each state w ∈W , label w by ϕi if the labeling rules allow it (note

that we label every time it is allowed, i.e. we label maximally).

3. Repeat until ϕ is processed.

67

We still need to describe how to do step 2.

• For formulas that are of the form ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, A©ϕ1, or E©ϕ1,

it is perfectly straightforward: one only needs to look at the current

labeling.

• For formulas of the form A(ϕ1U ϕ2), E(ϕ1U ϕ2), A(ϕ1 Ũ ϕ2), or

E(ϕ1 Ũ ϕ2), more needs to be done.

68

Coping with U and Ũ Formulas

For U and Ũ formulas, the labeling rules are recursive. Furthermore, for U

formulas we have to guarantee that their second argument is indeed

eventually satisfied.

Consider first the case of A(ϕ1U ϕ2) formulas. We use the following

observations.

• A node w that is already labeled by ϕ2 can be unconditionally labeled

by A(ϕ1U ϕ2).

• If for all w′ such that (w,w′) ∈ R, w′ is unconditionally labeled by

A(ϕ1U ϕ2) and if w is labeled by ϕ1, then w can be unconditionally

labeled by A(ϕ1U ϕ2).

These observations can be directly translated into the following algorithm.

69

1. Label all nodes already labeled by ϕ2 by A(ϕ1U ϕ2).

2. For each node w ∈W , if all w′ such that (w,w′) ∈ R are already labeled

by A(ϕ1U ϕ2) and if w is labeled by ϕ1, then label w by A(ϕ1U ϕ2).

3. Repeat step 2 until no more nodes need to be labeled.

70

For formulas of the form A(ϕ1 Ũ ϕ2), the situation is dual. Precisely, we

start with an optimistic labeling (all states in which ϕ2 appears) and then

remove nodes that have been labeled unsoundly.

The rules are the following.

• A node w that is already labeled by ϕ2 can be provisionally labeled by

A(ϕ1 Ũ ϕ2).

• if a node w is not labeled ϕ1 and some node w′ such that (w,w′) ∈ R is

not provisionally labeled by A(ϕ1 Ũ ϕ2), then remove A(ϕ1 Ũ ϕ2) from

the label of w.

The algorithm is then the following.

71

1. Label all nodes already labeled by ϕ2 by A(ϕ1 Ũ ϕ2).

2. For each node w ∈W , if w is not labeled by ϕ1 and if some w′ such

that (w,w′) ∈ R is not labeled by A(ϕ1 Ũ ϕ2), then remove A(ϕ1 Ũ ϕ2)

from the label of w.

3. Repeat step 2 until no more nodes need to be unlabeled.

A very similar procedure can be used for formulas of the form E(ϕ1 Ũ ϕ2).

72

Labeling Rules and Fixpoints

The labeling algorithms we have just given for U and Ũ can be seen as the

computation of fixpoints.

• Consider the set of subsets of W (2W) ordered with the subset

relation.

• Consider then a function T : 2W → 2W . A fixpoint of T is a set X

such that X = T (X).

• The least fixpoint µX.T (X) of T is the smallest set such that

X = T (X).

• The greatest fixpoint νX.T (X) of T is the largest set such that

X = T (X).

73

Theorem. If T is monotonic, i.e. if when X1 ≤ X2 then T (X1) ≤ T (X2),

then least and greatest fixpoints exist. Furthermore, under continuity

conditions (satisfied when W is finite), the fixpoints can be computed as

follows (these computations terminate since W is finite).

µXT .(X) =
⋃
i T i(∅)

νXT .(X) =
⋂
i T i(W)

Using these notions, we can write:

A(ϕ1U ϕ2) = µX(ϕ2 ∨ (ϕ1 ∧A©X))
A(ϕ1 Ũ ϕ2) = νX(ϕ2 ∧ (ϕ1 ∨A©X))

The algorithms we have given perform a computation corresponding

exactly to the evaluation of these fixpoints.

74

Complexity Issues

The algorithms given for labeling with U and Ũ formulas have a

complexity that is O(|W |2). This can be reduced to O(|W |) by avoiding

duplicate work.

Note that to achieve this complexity, we have to mark in one pass over

the structure all nodes in which the formula is true.

For AU formulas, one uses a depth-first search and marks processed

states (using a table marked).

The procedure then applies the recursive marking procedure aulabel to all

nodes that have not yet been processed while handling a previous node:

for all w ∈W
begin

if ¬marked(w) then aulabel(w, f)

end

75

The two arguments of the procedure aulabel are a node w and a formula
f of the form A(ϕ1U ϕ2).

procedure aulabel(w, f): boolean
begin

if marked(w) then
if f ∈ τ(w) then return(T)

else return(F);
marked(w) := T ;
if ϕ2 ∈ τ(w) then begin

τ(w) := τ(w) ∪ {f};
return(T)

end;
if ϕ1 6∈ τ(w) then return(F);
for all w′.(w,w′) ∈ R

begin
if ¬aulabel(w′, f) then return(F)
end;
τ(w) := τ(w) ∪ {f};
return(T)

end

76

For E Ũ formulas, the algorithm is similar and is given below

for all w ∈W
begin

if ¬marked(w) then eũlabel(w, f)

end

procedure eũlabel(w, f): boolean

begin

if marked(w) then

if f ∈ τ(w) then return(T)

else return(F);

marked(w) := T ;

τ(w) := τ(w) ∪ {f};
if ϕ2 6∈ τ(w) then begin

τ(w) := τ(w) \ {f};
return(F)

end;

77

if ϕ1 ∈ τ(w) then return(T);

for all w′.(w,w′) ∈ R
begin

if eũlabel(w′, f) then return(T)

end;

τ(w) := τ(w) \ {f};
return(F)

end

Note that when these algorithms find a cycle that goes back to a node

whose processing has started but is not finished, this node is assumed to

be unlabeled by f in the case of an AU formula, and is assumed to be

labeled by f in the case of an E Ũ formulas.

Indeed, for an AU formula, a cycle in which ϕ2 does not occur has been

found and the formula is false. For an E Ũ formula, a cycle in which ϕ2 is

always true has been found and the formula is thus true.

A similar approach cannot work for E U (or A Ũ formulas). Indeed, finding

a cycle on which ϕ2 is not true tells us nothing about and E U formula

since only the existence of a satisfying path is required. The same applies

dually to A Ũ formulas.

A different approach is thus needed for E U and A Ũ formulas. It consists

of proceeding backwards through the graph from nodes whose marking is

immediate.

78

For E U formulas, the algorithm is as below.

for all w ∈W
begin

if ϕ2 ∈ τ(w) ∧ f 6∈ τ(w) then eulabel(w, f)

end

procedure eulabel(w, f)

begin

τ(w) := τ(w) ∪ {f};
for all w′.(w′, w) ∈ R

begin

if ϕ1 ∈ τ(w′) ∧ f 6∈ τ(w′) then

eulabel(w′, f)

end

end

79

For A Ũ formulas, the algorithm is similar, except that we unlabel nodes.

for all w ∈W
begin
τ(w) := τ(w) ∪ {f}
end;

for all w ∈W
begin
if ϕ2 6∈ τ(w) ∧ f ∈ τ(w) then aũlabel(w, f)
end

procedure aũlabel(w, f)
begin
τ(w) := τ(w) \ {f};
for all w′.(w′, w) ∈ R

begin
if ϕ1 6∈ τ(w′) ∧ f ∈ τ(w′) then

aũlabel(w′, f)
end

end

80

Complexity Results

Since the model-checking algorithm uses time O(|W |) for each element of

the closure of the formula, its overall complexity is

O(|W | × |ϕ|).

To summarize the situation is the following.

Complexity of LTL Model Checking:

Linear in the size of the transition system (NLOGSPACE),

Exponential in the size of the FCS (PSPACE),

Linear in the size of the CTL property.

Note that the only difference with respect to LTL model checking is the

complexity in the size of the formula, which usually is not the crucial

factor.

81

