Christel Baier
Technical University Dresden

Joost-Pieter Katoen RWTH Aachen

David Parker University of Oxford

Probabilistic Computation Tree Logic and Quantitative Linear-Time Properties

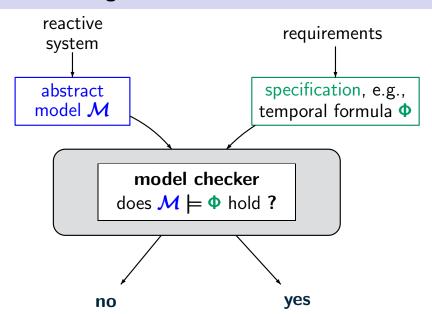
Christel Baier
Technical University Dresden

randomized algorithms [RABIN'1960]
 fingerprints, input sampling, breaking symmetry, ...
 models: discrete-time Markov chains (DTMC)
 Markov decision processes (MDP)

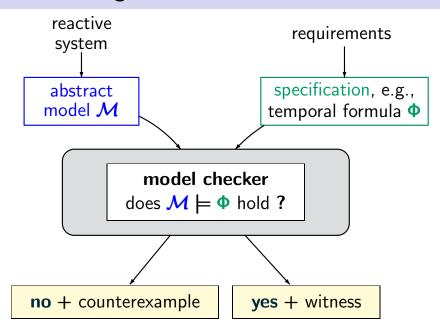
- randomized algorithms [RABIN'1960]
 fingerprints, input sampling, breaking symmetry, ...
 models: discrete-time Markov chains (DTMC)
 Markov decision processes (MDP)
- performance modeling [Erlang 1907]
 emphasis on steady-state and transient measures
 models: continuous-time Markov chains

- randomized algorithms [RABIN'1960]
 fingerprints, input sampling, breaking symmetry, ...
 models: discrete-time Markov chains (DTMC)
 Markov decision processes (MDP)
- performance modeling [Erlang 1907]
 emphasis on steady-state and transient measures
 models: continuous-time Markov chains
- stochastic control theory [Bellman 1957] operations research models: Markov decision processes
- modelling biological systems, security protocols
 :

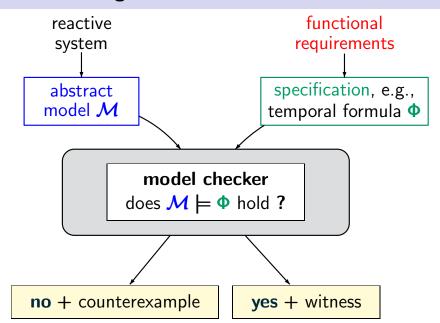
Model Checking

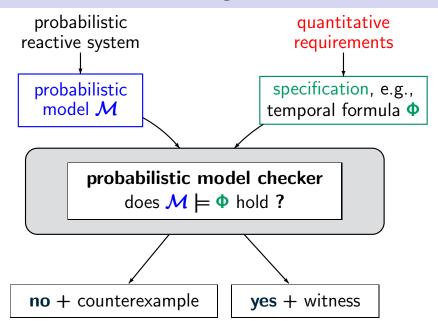


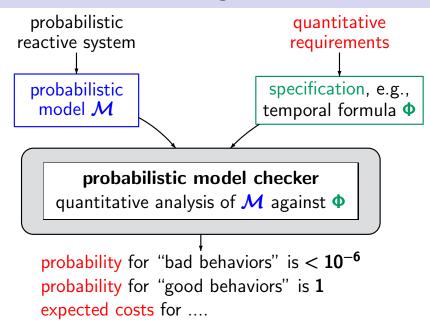
Model Checking

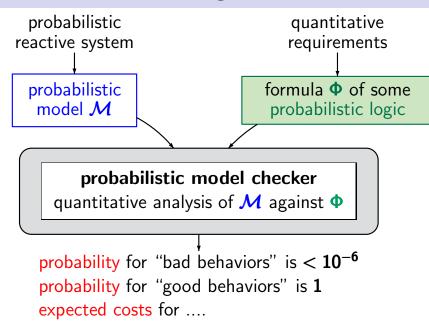


Model Checking

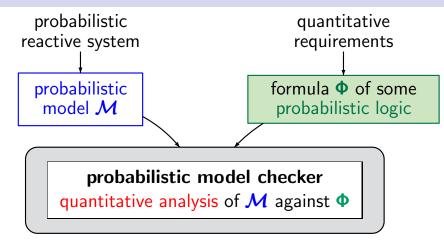








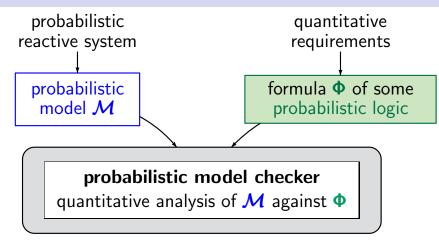
PMC-06



quantitative analysis relies on a combination of

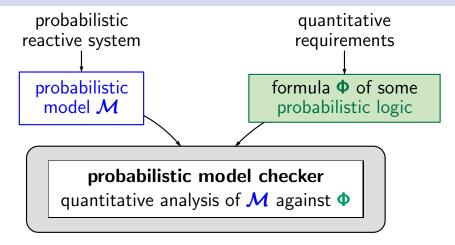
- model checking techniques
- known concepts for stochastic models

PMC-06



logical approach --> unambiguous measure specifications

 $_{\mathrm{PMC-06}}$



logical approach → unambiguous measure specifications model checking → automatic computation of quantitative measures (probabilities, expectation)

Tutorial: probabilistic model checking

part 1: Markov chains ←
probabilistic computation tree logic
(PCTL/PCTL*)

part 2: Markov decision processes (MDP)
PCTL/PCTL* over MDP
partial order reduction for MDP
MDP with fairness

is a transition system with probabilities for the successor states

$$\mathcal{M} = (S, P, \dots)$$

• state space **5**

$$\mathcal{M} = (S, P, \dots)$$

• state space *S* ← here: finite

$$\mathcal{M} = (S, P, \dots)$$

- state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

$$\sum_{s' \in S} P(s, s') = 1$$

$$\mathcal{M} = (S, P, \dots)$$

- state space 5 ← here: finite
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

$$\sum_{\mathbf{s'}\in\mathcal{S}}P(\mathbf{s},\mathbf{s'})=1$$

discrete-time or time-abstract

$$\mathcal{M} = (S, P, AP, L)$$

- state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$ s.t. $\sum P(s,s') = 1$
- AP set of atomic propositions
- labeling function $L: S \to 2^{AP}$

$$\mathcal{M} = (S, P, AP, L)$$
 \leftarrow + initial distribution or initial state

- state space 5
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

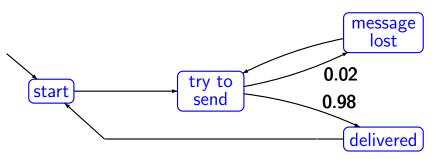
$$\sum_{s' \in S} P(s, s') = 1$$

- AP set of atomic propositions
- labeling function $L: S \to 2^{AP}$

$$\mathcal{M} = (S, P, AP, L)$$
 \leftarrow + initial distribution or initial state

- state space 5
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

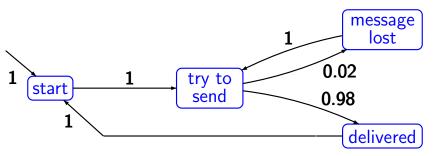
$$\sum_{\mathbf{s}' \in S} P(\mathbf{s}, \mathbf{s}') = 1$$



$$\mathcal{M} = (S, P, AP, L)$$
 \leftarrow + initial distribution or initial state

- state space 5
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

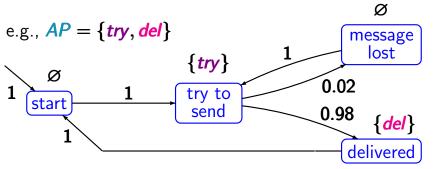
$$\sum_{\mathbf{s}' \in S} P(\mathbf{s}, \mathbf{s}') = 1$$



$$\mathcal{M} = (S, P, AP, L)$$
 \leftarrow + initial distribution or initial state

- state space S
- transition probability function $P: S \times S \rightarrow [0, 1]$ s.t.

$$\sum_{\mathbf{s}' \in S} P(\mathbf{s}, \mathbf{s}') = 1$$



Probability measure of a Markov chain

$$\mathcal{M} = (S, P, AP, L, p_0)$$
 Markov chain
initial distribution $p_0 : S \to [0, 1]$

Probability measure of a Markov chain

$$\mathcal{M} = (S, P, AP, L, p_0)$$
 Markov chain

initial distribution $p_0 : S \to [0, 1]$

probability measure for sets of paths:

$$\mathcal{M} = (S, P, AP, L, p_0)$$
 Markov chain
initial distribution $p_0 : S \to [0, 1]$

probability measure for sets of paths:

consider the σ -algebra generated by cylinder sets

$$\mathcal{M} = (S, P, AP, L, p_0)$$
 Markov chain

initial distribution $p_0 : S \to [0, 1]$

probability measure for sets of paths:

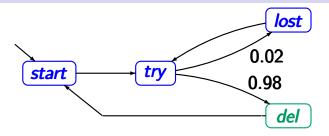
consider the σ -algebra generated by cylinder sets

$$\Delta(s_0 s_1 \dots s_n) = \text{ set of infinite paths}$$

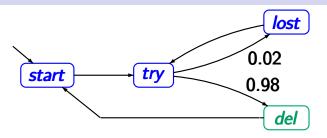
$$\uparrow \qquad \qquad s_0 s_1 \dots s_n s_{n+1} s_{n+2} s_{n+3} \dots$$
finite path

probability measure is given by:

$$Pr^{\mathcal{M}}(\Delta(s_0 s_1 \dots s_n)) = p_0(s_0) \cdot \prod_{1 \leq i \leq n} P(s_{i-1}, s_i)$$



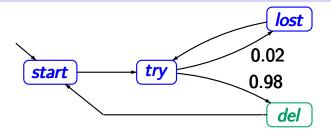
probability for delivering the message within 5 steps:



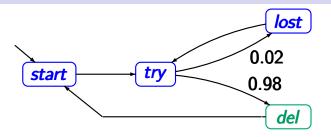
probability for delivering the message within 5 steps:

$$= \Pr^{\mathcal{M}}(start \ try \ del) + \Pr^{\mathcal{M}}(start \ try \ lost \ try \ del)$$

$$= 0.98 + 0.02 \cdot 0.98 = 0.9996$$



probability for eventually delivering the message:



probability for eventually delivering the message:

$$= \sum_{n=0}^{\infty} \Pr^{\mathcal{M}}(start try (lost try)^n del)$$
$$= \sum_{n=0}^{\infty} 0.02^n \cdot 0.98 = 1$$

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

Almost surely, i.e., with probability 1:

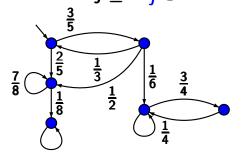
A bottom strongly connected component will be reached and all its states visited infinitely often.

$$\Pr^{\mathcal{M}}\left\{s_{0} s_{1} s_{2} \dots : \exists i \geq 0 \exists BSCC C \text{ s.t.} \right.$$
$$\forall j \geq i. s_{j} \in C \land \forall s \in C \stackrel{\infty}{\exists} j. s_{j} = s\right\} = 1$$

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

$$\Pr^{\mathcal{M}}\left\{s_{0} s_{1} s_{2} \dots : \exists i \geq 0 \exists \mathsf{BSCC} \; C \; \mathsf{s.t.} \right.$$
$$\forall j \geq i. \, s_{j} \in C \; \land \; \forall s \in C \; \exists \; j. \, s_{j} = s\right\} = 1$$

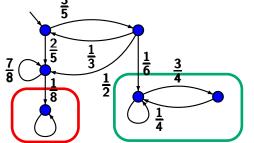


Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

$$\Pr^{\mathcal{M}}\left\{s_{0} s_{1} s_{2} \dots : \exists i \geq 0 \exists \mathsf{BSCC} \; C \; \mathsf{s.t.} \right.$$

$$\forall j \geq i. \, s_{j} \in C \; \land \; \forall s \in C \; \exists \; j. \, s_{j} = s\right\} = 1$$



2 BSCCs

Tutorial: probabilistic model checking

- part 1: Markov chains

 probabilistic computation tree logic ←

 (PCTL/PCTL*)
- part 2: Markov decision processes (MDP)
 PCTL/PCTL* over MDP
 partial order reduction
 fairness

PCTL/PCTL*

[Hansson/Jonsson 1994]

- probabilistic variants of CTL/CTL*
- contains a probabilistic operator P
 to specify lower/upper probability bounds

PCTL/PCTL*

[Hansson/Jonsson 1994]

- probabilistic variants of CTL/CTL*
- contains a probabilistic operator P
 to specify lower/upper probability bounds
- operators for expected costs, long-run averages, ...
 not considered here, but can be added

```
state formulas:
```

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \dots$$

path formulas:

$$\varphi ::= \dots$$

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$

path formulas:

$$\varphi ::= \dots$$

where $a \in AP$ is an atomic proposition $I \subseteq [0,1]$ is a probability interval

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{I}(\varphi)$$

path formulas:

$$\varphi ::= \dots$$

where $a \in AP$ is an atomic proposition $I \subseteq [0,1]$ is a probability interval

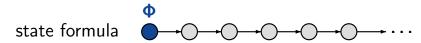
qualitative properties: $\mathbb{P}_{>0}(\varphi)$ or $\mathbb{P}_{=1}(\varphi)$ quantitative properties: e.g., $\mathbb{P}_{>0.5}(\varphi)$ or $\mathbb{P}_{\leq 0.01}(\varphi)$

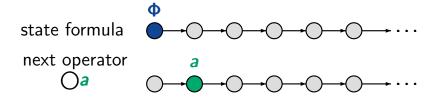
state formulas:
$$\Phi ::= \textit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \dots$$
 state formula

state formulas: $\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$ path formulas: $\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \ldots$

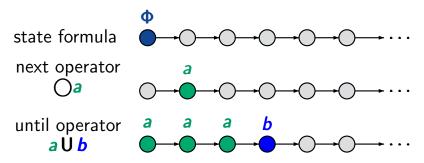
state formulas:
$$\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \ \mathsf{U} \ \varphi_2$$

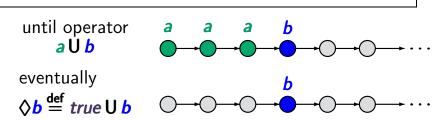
state formulas:
$$\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

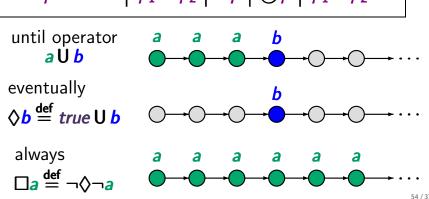




state formulas:
$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$







Let $\mathcal{M} = (S, P, AP, L)$ be a Markov chain.

define by structural induction:

- a satisfaction relation ⊨ for states s ∈ S and PCTL* state formulas
- a satisfaction relation |= for infinite
 path fragments σ in M and PCTL* path formulas

$$s \models true$$
 $s \models a$ iff $a \in L(s)$
 $s \models \neg \Phi$ iff $s \not\models \Phi$
 $s \models \Phi_1 \land \Phi_2$ iff $s \models \Phi_1$ and $s \models \Phi_2$
 $s \models \mathbb{P}_{\mathbf{I}}(\varphi)$ iff $\mathsf{Pr}^{\mathcal{M}}(s, \varphi) \in \mathbf{I}$

$$s \models true$$
 $s \models a$ iff $a \in L(s)$
 $s \models \neg \Phi$ iff $s \not\models \Phi$
 $s \models \Phi_1 \land \Phi_2$ iff $s \models \Phi_1$ and $s \models \Phi_2$
 $s \models \mathbb{P}_{\mathrm{I}}(\varphi)$ iff $\mathsf{Pr}^{\mathcal{M}}(s, \varphi) \in \mathrm{I}$

probability measure of the set of paths π with $\pi \models \varphi$

when s is viewed as the unique starting state

Semantics of PCTL* path formulas

let $\pi = s_0 s_1 s_2 s_3 \dots$ be an infinite path in \mathcal{M}

let $\pi = s_0 s_1 s_2 s_3 \dots$ be an infinite path in \mathcal{M}

$$\pi \models \Phi \qquad \text{iff} \quad s_0 \models \Phi \\
\pi \models \neg \varphi \qquad \text{iff} \quad \pi \not\models \varphi \\
\pi \models \varphi_1 \land \varphi_2 \qquad \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2 \\
\pi \models \bigcirc \varphi \qquad \text{iff} \quad s_1 s_2 s_3 \dots \models \varphi \\
\pi \models \varphi_1 \cup \varphi_2 \qquad \text{iff} \quad \text{there exists } \ell \geq 0 \text{ such that} \\
s_\ell s_{\ell+1} s_{\ell+2} \dots \models \varphi_2 \\
s_i s_{i+1} s_{i+2} \dots \models \varphi_1 \quad \text{for } 0 \leq i < \ell$$

communication protocol:

```
\begin{array}{l} \mathbb{P}_{\leqslant 0.001}(\ \lozenge error\ ) \\ \mathbb{P}_{=1}(\ \Box(\ try\_to\_send\ \longrightarrow \mathbb{P}_{\geqslant 0.9}(\bigcirc delivered)\ )\ ) \\ \mathbb{P}_{=1}(\ \Box(\ try\_to\_send\ \longrightarrow \neg start\ U\ delivered\ ) \end{array})
```

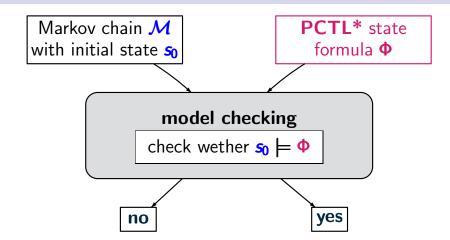
communication protocol:

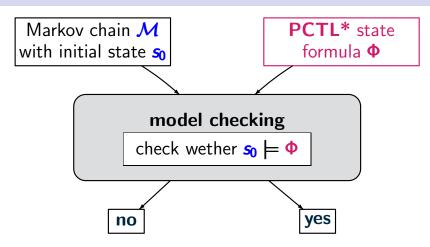
```
\begin{array}{l} \mathbb{P}_{\leqslant 0.001}(\ \lozenge error\ ) \\ \mathbb{P}_{=1}(\ \Box(\ try\_to\_send\ \longrightarrow \mathbb{P}_{\geqslant 0.9}(\bigcirc delivered)\ )\ ) \\ \mathbb{P}_{=1}(\ \Box(\ try\_to\_send\ \longrightarrow \neg start\ U\ delivered\ ) \end{array})
```

leader election protocol for *n* processes in a ring

- each process chooses a random number in {1, ..., k} as id
- all ids are synchronously passed around the ring
- if there is a unique id then elect the process with the max. unique id, otherwise repeat

$$\mathbb{P}_{=1}(\lozenge leader_elected), \mathbb{P}_{\geqslant 0.9}(\bigvee_{i \leqslant n} \bigcirc^{i} leader_elected)$$





idea: recursively compute $Sat(\Psi) = \{s : s \models \Psi\}$ for all sub-state formulas Ψ of Φ and check whether $s_0 \in Sat(\Phi)$

Recursive computation of the satisfaction sets

```
Sat(true) = S state space of \mathcal{M}

Sat(a) = \{s \in S : a \in L(s)\}

Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)

Sat(\neg \Phi) = S \setminus Sat(\Phi)
```

```
Sat(true) = S \text{ state space of } \mathcal{M}
Sat(a) = \{s \in S : a \in L(s)\}
Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_I(\varphi)) = \{s \in S : \Pr^{\mathcal{M}}(s, \varphi) \in I\}
```

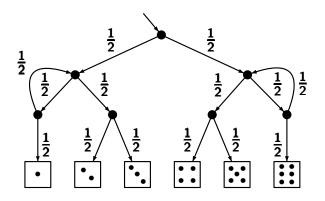
```
Sat(true) = S \text{ state space of } \mathcal{M}
Sat(a) = \{s \in S : a \in L(s)\}
Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : \Pr^{\mathcal{M}}(s, \varphi) \in \mathbf{I}\}
```

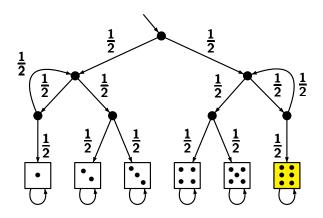
special case: $\varphi = \Diamond \Phi$

```
Sat(true) = S \text{ state space of } \mathcal{M}
Sat(a) = \left\{ s \in S : a \in L(s) \right\}
Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \left\{ s \in S : \Pr^{\mathcal{M}}(s, \varphi) \in \mathbf{I} \right\}
```

special case: $\varphi = \Diamond \Phi$

- 1. compute recursively $Sat(\Phi)$
- 2. compute $x_s = \Pr^{\mathcal{M}}(s, \Diamond \Phi)$ by solving a linear equation system

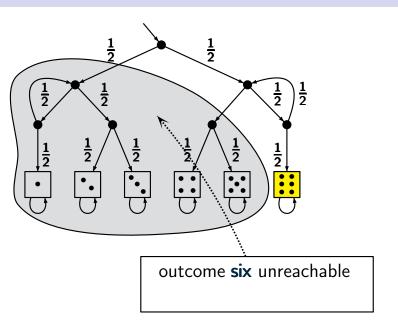


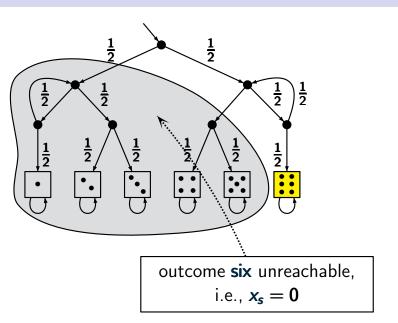


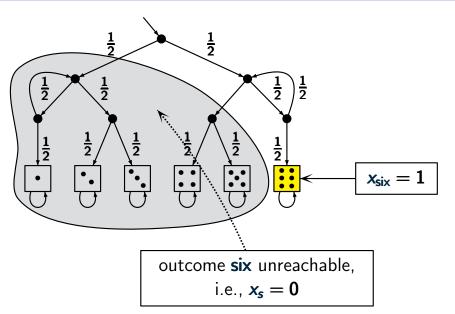
probability for the outcome six

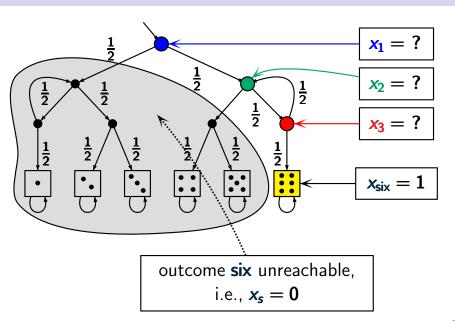
$$Pr^{\mathcal{M}}(\lozenge \text{ six }) =$$
?

[Knuth]

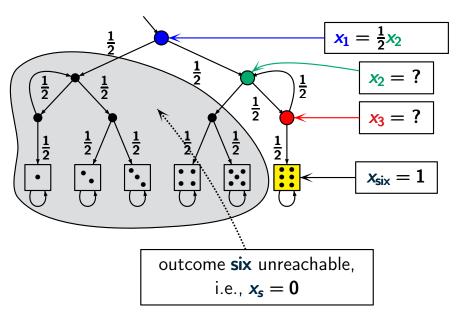




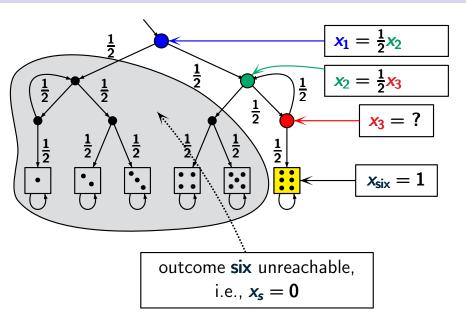




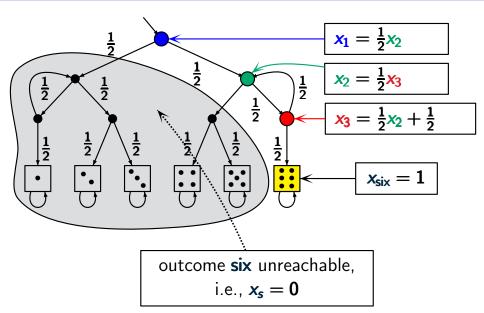
[Knuth]



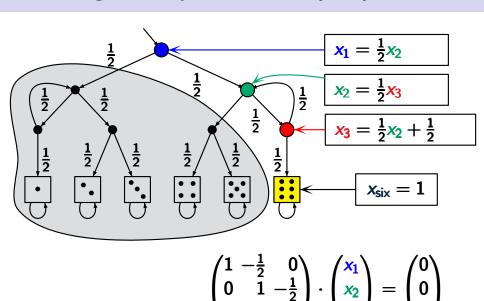
[Knuth]



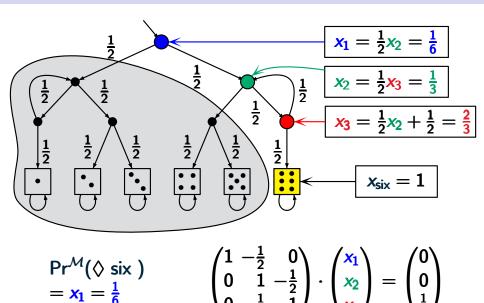
[Knuth]



[Knuth] PMC-43



n [Knuth] PMC-43



82 / 378

PCTL

PMC-46

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathrm{I}}(\varphi)$$

path formulas:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

$$\mathbb{P}_{\mathrm{I}}(\Diamond \Phi) \stackrel{\mathsf{def}}{=} \mathbb{P}_{\mathrm{I}}(\mathsf{true} \, \mathsf{U} \, \Phi)$$

$$\mathbb{P}_{\mathrm{I}}(\Diamond \Phi) \stackrel{\mathsf{def}}{=} \mathbb{P}_{\mathrm{I}}(\mathit{true} \, \mathsf{U} \, \Phi)$$
e.g., $\mathbb{P}_{<0.4}(\Box \Phi) \stackrel{\mathsf{def}}{=} \mathbb{P}_{>0.6}(\Diamond \neg \Phi)$

state formulas:
$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \lozenge \Phi \mid \Box \Phi$$

$$\begin{array}{ccc} \mathbb{P}_{\mathbf{I}}(\Diamond \Phi) & \stackrel{\mathrm{def}}{=} & \mathbb{P}_{\mathbf{I}}(\mathit{true} \, \mathsf{U} \, \Phi) \\ \\ \text{e.g.,} & \mathbb{P}_{<0.4}(\Box \Phi) & \stackrel{\mathrm{def}}{=} & \mathbb{P}_{>0.6}(\Diamond \neg \Phi) \\ \\ \text{note:} & \mathsf{Pr}^{\mathcal{M}}(s, \Box \Phi) & = & 1 - \mathsf{Pr}^{\mathcal{M}}(s, \Diamond \neg \Phi) \end{array}$$

PCTL state formula •

task: check whether $\mathcal{M} \models \Phi$

PCTL state formula Φ

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

 $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all subformulas Ψ of Φ

PCTL state formula **Φ**

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\} \text{ for all subformulas } \Psi \text{ of } \Phi$$

in bottom-up manner, i.e., inner subformulas first

PCTL state formula **Φ**

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all subformulas Ψ of Φ

treatment of propositional logic fragment:

PCTL state formula •

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of $Sat(M) = \{s \in S : s \vdash M \}$ for all subformulas M of Φ

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all subformulas Ψ of Φ

treatment of propositional logic fragment: obvious

$$Sat(true) = S$$

$$Sat(a) = \{s \in S : a \in L(s)\}$$

$$Sat(\neg \Psi) = S \setminus Sat(\Psi)$$

$$Sat(\Psi_1 \land \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$$

PCTL state formula •

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all subformulas Ψ of Φ

- treatment of propositional logic fragment: obvious
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL state formula •

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all subformulas Ψ of Φ

- treatment of propositional logic fragment: obvious
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

compute
$$\Pr^{\mathcal{M}}(s,\varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : \Pr^{\mathcal{M}}(s,\varphi) \in \mathbf{I}\}$

Treatment of the probabilistic operator in PCTL PMC-48

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$

compute $\mathbf{x}_s = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $\mathbf{x}_s = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$ until operator, i.e., $\varphi = \Psi_1 \mathbf{U} \Psi_2$:

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $\mathbf{x_s} = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$ until operator, i.e., $\varphi = \Psi_1 \cup \Psi_2$: compute
$$S^0 = \{s \in S : x_s = 0\}$$

$$S^1 = \{s \in S : x_s = 1\}$$

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $\mathbf{x_s} = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$ until operator, i.e., $\varphi = \Psi_1 \cup \Psi_2$: compute
$$S^0 = \{s \in S : x_s = 0\} = \{s : s \not\models \exists \Psi_1 \cup \Psi_2\}$$
$$S^1 = \{s \in S : x_s = 1\}$$

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $x_s = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$ until operator, i.e., $\varphi = \Psi_1 \cup \Psi_2$: compute
$$S^0 = \{s \in S : x_s = 0\} = \{s : s \not\models \exists \Psi_1 \cup \Psi_2\}$$
$$S^1 = \{s \in S : x_s = 1\} = \{s : s \not\models \exists (\neg \Psi_2) \cup S^0\}$$

Treatment of the probabilistic operator in PCTL PMC-48

compute $x_s = \Pr^{\mathcal{M}}(s, \varphi)$ for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : x_s \in \mathbf{I}\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $\mathbf{x}_s = P(s, Sat(\Psi)) = \sum_{s' \in Sat(\Psi)} P(s, s')$ until operator, i.e., $\varphi = \Psi_1 \cup \Psi_2$: compute

 $S^0 = \{s \in S : x_s = 0\} = \{s : s \not\models \exists \Psi_1 \cup \Psi_2\}$

$$S^1 = \{s \in S : x_s = 1\} = \{s : s \not\models \exists (\neg \Psi_2) \cup S^0\}$$

and solve the linear equation system

$$x_s = \sum_{s \in S} P(s, s') \cdot x_{s'} + P(s, Sat(\Psi_2))$$
 for $s \in S^?$

Treatment of the probabilistic operator in PCTL PMC-48

compute
$$x_s = \Pr^{\mathcal{M}}(s, \varphi)$$
 for all states s and return $Sat(\mathbb{P}_I(\varphi)) = \{s \in S : x_s \in I\}$

next operator, i.e.,
$$\varphi = \bigcirc \Psi$$
 compute $x_s = P(s, Sat(\Psi))$

time complexity: $\mathcal{O}(\text{poly}(\text{size}(\mathcal{M})))$

until operator, i.e.,
$$\varphi = \Psi_1 \cup \Psi_2$$
: compute
$$S^0 = \{s \in S : x_s = 0\} = \{s : s \not\models \exists \Psi_1 \cup \Psi_2\}$$
$$S^1 = \{s \in S : x_s = 1\} = \{s : s \not\models \exists (\neg \Psi_2) \cup S^0\}$$
and solve the linear equation system
$$x_s = \sum_{s} P(s, s') \cdot x_{s'} + P(s, Sat(\Psi_2)) \text{ for } s \in S^?$$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

 $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all sub-state formulas Ψ

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

- propositional logic fragment: √
- probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$

PCTL*-state formula •

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

- ullet propositional logic fragment: $\sqrt{}$
- probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$

replace the **PCTL*** formula φ with an **LTL** formula φ' path formula without state formulas $\mathbb{P}_{\mathbf{I}}(\ldots)$

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$ PCTL*-state formula Φ

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

• probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$

replace the **PCTL*** formula φ with an **LTL** formula φ' compute $\Pr^{\mathcal{M}}(s,\varphi')$ for all states s and return $Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{s \in S : \Pr^{\mathcal{M}}(s,\varphi') \in \mathbf{I}\}$

 $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all sub-state formulas Ψ

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

treatment of subformulas $\Psi = \mathbb{P}_{\mathbf{I}}(\varphi)$

PCTL* path formula $\varphi \leadsto \mathsf{LTL}$ formula φ'

by replacing each maximal state-subformula of arphi with a fresh atomic proposition

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

treatment of subformulas $\Psi = \mathbb{P}_{\mathbf{I}}(\varphi)$

PCTL* path formula
$$\varphi \rightsquigarrow LTL$$
 formula φ'

$$\Diamond \left(\mathsf{a} \, \mathsf{U} \, \mathbb{P}_{\geq 0.7}(\Box \Diamond \mathsf{b}) \, \land \Box \, \mathbb{P}_{< 0.3}(\bigcirc \Box \mathsf{c}) \, \right)$$

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

treatment of subformulas $\Psi = \mathbb{P}_{\mathbf{I}}(\varphi)$

PCTL* path formula
$$\varphi \leadsto \mathsf{LTL}$$
 formula φ'

$$\Diamond \left(\mathsf{a} \, \mathsf{U} \, \mathbb{P}_{\geq 0.7} (\Box \Diamond \, b) \right) \wedge \Box \, \mathbb{P}_{< 0.3} (\bigcirc \Box \, c) \, \right)$$

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL*-state formula ◆

task: check whether $\mathcal{M} \models \Phi$

model checking relies on recursive computation of

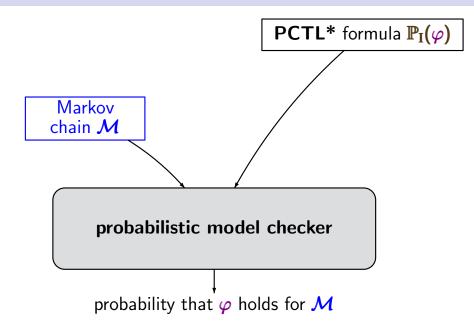
$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

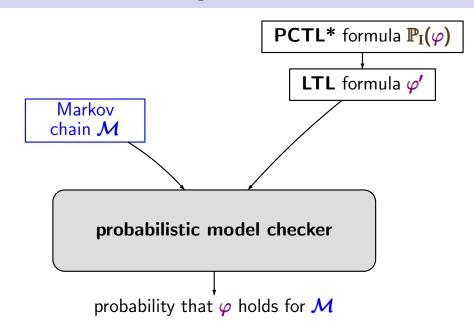
treatment of subformulas $\Psi = \mathbb{P}_{I}(\varphi)$

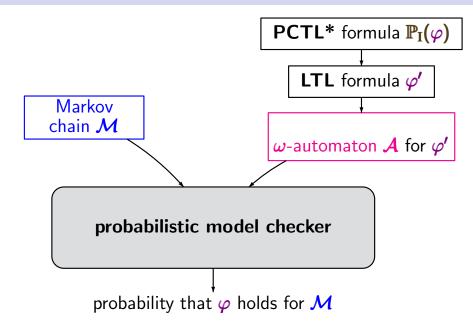
PCTL* path formula
$$\varphi \leadsto LTL$$
 formula φ'

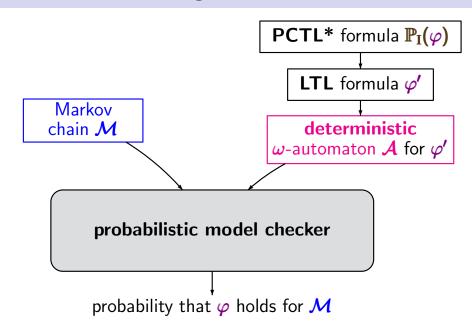
$$\Diamond(a \cup \mathbb{P}_{\geq 0.7}(\Box \Diamond b) \land \Box \mathbb{P}_{<0.3}(\bigcirc \Box c))$$

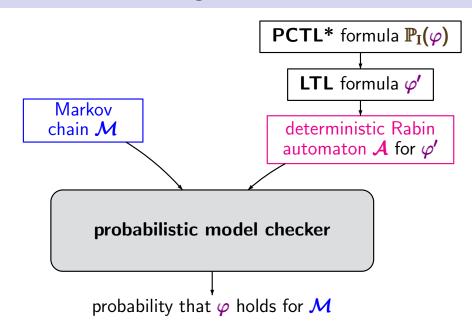
$$\Diamond(a \cup d \land \Box e)$$











- **Q** finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function

PMC-54

Deterministic Rabin automata (DRA)

A **DRA** is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- **Q** finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function
- acceptance condition Acc is a set of pairs (L, U) with $L, U \subseteq Q$

- **Q** finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function
- acceptance condition Acc is a set of pairs (L, U) with $L, U \subseteq Q$, say $Acc = \{(L_1, U_1), ..., (L_k, U_k)\}$

- Q finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function
- acceptance condition Acc is a set of pairs (L, U) with $L, U \subseteq Q$, say $Acc = \{(L_1, U_1), ..., (L_k, U_k)\}$

semantics of the acceptance condition:

$$\bigvee_{1 \leq i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond U_i)$$

- Q finite state space, q₀ initial state, ∑ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ transition function
- $Acc = \{(L_1, U_1), \ldots, (U_k, U_k)\}$ with $L_i, U_i \subseteq Q$

accepted language:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \text{ the run for } \sigma \text{ in } \mathcal{A} \text{ fulfills } Acc \right\}$$

- Q finite state space, q_0 initial state, Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ transition function
- $Acc = \{(L_1, U_1), \ldots, (U_k, U_k)\}$ with $L_i, U_i \subseteq Q$

accepted language:

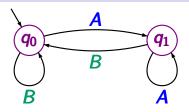
$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \text{ the run for } \sigma \text{ in } \mathcal{A} \text{ fulfills } Acc \right\}$$

if $\rho = q_0 q_1 q_2 \dots$ is the run for $\sigma = A_0 A_1 A_2 \dots$ then

$$\exists i \in \{1, \dots, k\}. \ \mathsf{inf}(\rho) \cap L_i = \emptyset \ \land \ \mathsf{inf}(\rho) \cap U_i \neq \emptyset$$

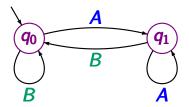
where
$$\inf(\rho) = \{q \in Q : \exists \ell \in \mathbb{N}. \ q = q_{\ell}\}$$

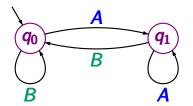
Example: DRA



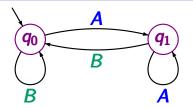
$$\textit{Acc} = \{ (\{\textit{q}_0\}, \{\textit{q}_1\}) \}$$

PMC-54B

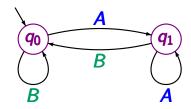




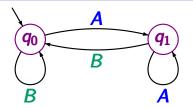
accepted language: $(A + B)^*A^{\omega}$



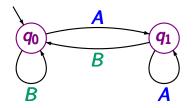
accepted language: $(A + B)^*A^{\omega}$



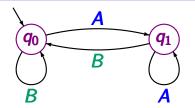
$$Acc = \{(\varnothing, \{q_1\})\}$$



accepted language: $(A + B)^*A^{\omega}$



$$Acc = \{(\varnothing, \{q_1\})\}$$
$$\widehat{=} \Box \Diamond q_1$$



accepted language: $(A + B)^*A^\omega$

$$q_0$$
 B
 q_1
 A

$$Acc = \{(\varnothing, \{q_1\})\}$$
$$\widehat{=} \Box \Diamond q_1$$

accepted language: $(B^*A)^{\omega}$

Fundamental result: LTL-2-DRA

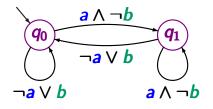
PMC-55

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O}\big(2\text{exp}(|\varphi|)\big)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O}\big(2\text{exp}(|\varphi|)\big)$$

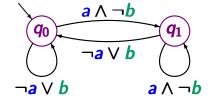
Example: $AP = \{a, b\}$



acceptance condition: $\Diamond \Box \neg a_0 \land \Box \Diamond a_1$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O}\big(2\text{exp}(|\varphi|)\big)$$

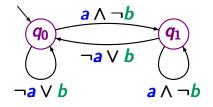
Example:
$$AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$



acceptance condition: $\Diamond \Box \neg a_0 \land \Box \Diamond a_1$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O} ig(2 \exp(|\varphi|) ig)$$

Example: $AP = \{a, b\} \rightsquigarrow \Sigma = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}$



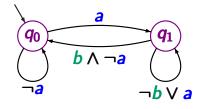
acceptance condition:

$$\Diamond \Box \neg q_0 \land \Box \Diamond q_1$$

LTL formula $\Diamond \Box (a \land \neg b)$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O}\big(2\text{exp}(|\varphi|)\big)$$

Example:
$$AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

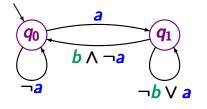


acceptance condition:

$$\Diamond \Box \neg q_1 \wedge \Box \Diamond q_0$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\} \text{ and } |\mathcal{A}| = \mathcal{O} ig(2 \exp(|\varphi|) ig)$$

Example: $AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

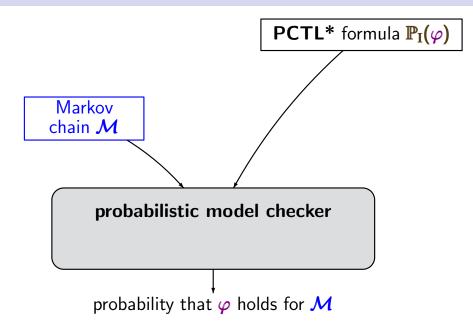


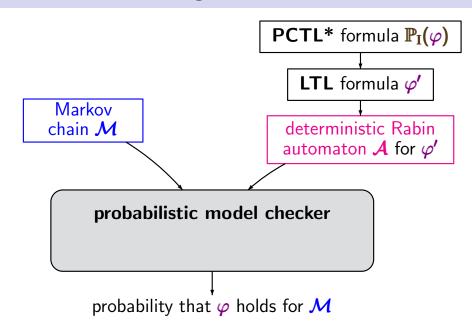
acceptance condition:

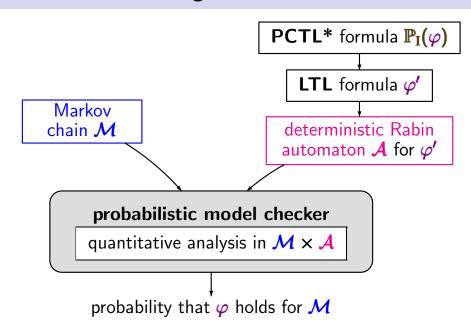
$$\Diamond\Box\neg q_1 \wedge \Box\Diamond q_0$$

LTL formula

$$\Box(a \to \Diamond(b \land \neg a)) \land \Diamond\Box \neg a$$







given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$

given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$ such that

$$\mathsf{Pr}^{\mathcal{M}}(s,\mathcal{A}) = \mathsf{Pr}^{\mathcal{M}}\big\{\pi \in \mathit{Paths}(s) : \mathit{trace}(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\big\}$$

can be derived by a probabilistic reachability analysis in the product-chain $\mathcal{M} \times \mathcal{A}$

given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$

path π in \mathcal{M}

given: Markov chain $\mathcal{M} = (S, P, AP, L)$

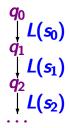
DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$

path π in \mathcal{M}

50 + **5**1 + **5**2 + •

run for $trace(\pi)$ in A



given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$

path in run for $trace(\pi)$ path π in \mathcal{M} in .**A**

given: Markov chain
$$\mathcal{M} = (S, P, AP, L)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

Markov chain $\mathcal{M} \times \mathcal{A} = (S \times Q, P', ...)$ where

given: Markov chain
$$\mathcal{M} = (S, P, AP, L)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

Markov chain $\mathcal{M} \times \mathcal{A} = (S \times Q, P', ...)$ where

$$P'(\langle s, q \rangle, \langle s', q' \rangle) = \begin{cases} P(s, s') : \text{if } q' = \delta(q, L(s')) \\ 0 : \text{otherwise} \end{cases}$$

given: Markov chain
$$\mathcal{M} = (S, P, AP, L, s_0)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

Markov chain $\mathcal{M} \times \mathcal{A} = (S \times Q, P', ...)$ where

$$P'(\langle s, q \rangle, \langle s', q' \rangle) = \begin{cases} P(s, s') : \text{if } q' = \delta(q, L(s')) \\ 0 : \text{otherwise} \end{cases}$$

initial state of $\mathcal{M} \times \mathcal{A}$: $\langle s_0, \delta(q_0, L(s_0)) \rangle$

PMC-56B

Fundamental property of the product

given: Markov chain $\mathcal{M} = (S, P, AP, L)$ DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$ where $Acc = \{(L_i, U_i) : 1 \le i \le k\}$

```
given: Markov chain \mathcal{M} = (S, P, AP, L)

DRA \mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)

where Acc = \{(L_i, U_i) : 1 \le i \le k\})

given state s \in S, let q_s = \delta(q_0, L(s))
```

given: Markov chain
$$\mathcal{M} = (S, P, AP, L)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$
where $Acc = \{(L_i, U_i) : 1 \le i \le k\}$

given state $s \in S$, let $q_s = \delta(q_0, L(s))$

$$\mathsf{Pr}^{\mathcal{M}}(s,\mathcal{A}) = \mathsf{Pr}^{\mathcal{M}\times\mathcal{A}}(\langle s,q_s\rangle,\bigvee_{1\leq i\leq k}(\Diamond\Box\neg L_i\wedge\Box\Diamond U_i))$$

```
given: Markov chain \mathcal{M} = (S, P, AP, L)

DRA \mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)

where Acc = \{(L_i, U_i) : 1 \le i \le k\}

given state s \in S, let q_s = \delta(q_0, L(s))
```

$$Pr^{\mathcal{M}}(s, \mathcal{A}) = Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \bigvee_{1 \leq i \leq k} (\Diamond \Box \neg L_i \wedge \Box \Diamond U_i))$$
$$= Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \Diamond accBSCC)$$

given: Markov chain
$$\mathcal{M} = (S, P, AP, L)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$
where $Acc = \{(L_i, U_i) : 1 \le i \le k\}$

given state $s \in S$, let $q_s = \delta(q_0, L(s))$

$$Pr^{\mathcal{M}}(s, \mathcal{A}) = Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \bigvee_{1 \leq i \leq k} (\Diamond \Box \neg L_i \wedge \Box \Diamond U_i))$$
$$= Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \Diamond accBSCC)$$

union of accepting bottom strongly connected component

given: Markov chain
$$\mathcal{M} = (S, P, AP, L)$$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$
where $Acc = \{(L_i, U_i) : 1 \le i \le k\})$

given state $s \in S$, let $q_s = \delta(q_0, L(s))$

$$Pr^{\mathcal{M}}(s, \mathcal{A}) = Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \bigvee_{1 \leq i \leq k} (\Diamond \Box \neg L_i \wedge \Box \Diamond U_i))$$
$$= Pr^{\mathcal{M} \times \mathcal{A}} (\langle s, q_s \rangle, \Diamond accBSCC)$$

union of accepting bottom strongly connected component, i.e., BSCCs C in $M \times A$ s.t.

$$\exists i \in \{1, \ldots, k\}. \ C \cap L_i = \emptyset \land C \cap U_i \neq \emptyset$$

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

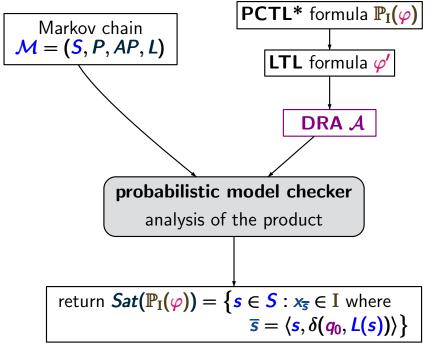
PCTL*-state formula **Ф**

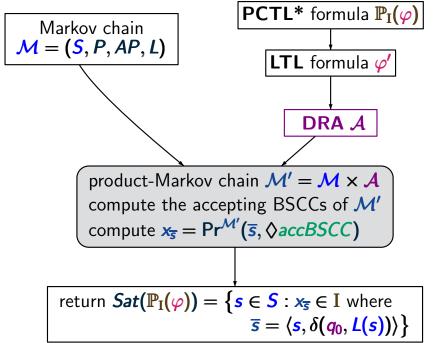
task: check whether $\mathcal{M} \models \Phi$

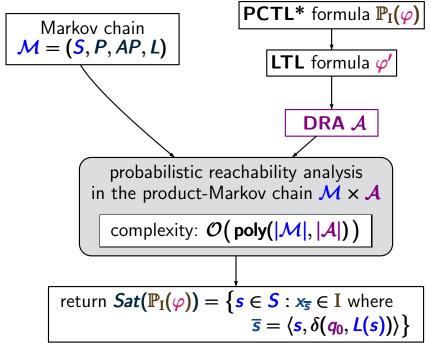
model checking relies on recursive computation of

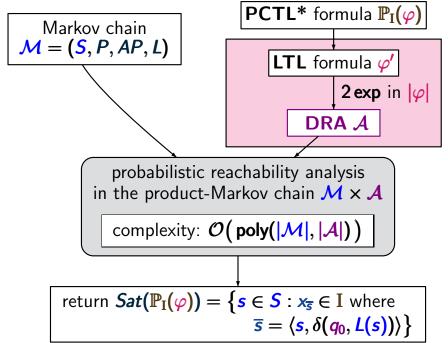
$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all sub-state formulas Ψ

- propositional logic fragment: obvious, as for PCTL
- probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$ via **DRA** for φ and reduction to a probabilistic reachability analysis in the product









Tutorial: probabilistic model checking

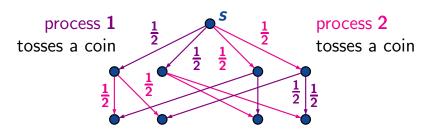
- part 1: Markov chains probabilistic computation tree logic (PCTL/PCTL*)
- part 2: Markov decision processes (MDP) ←
 PCTL/PCTL* over MDP
 partial order reduction
 fairness

Markov decision processes (MDP)

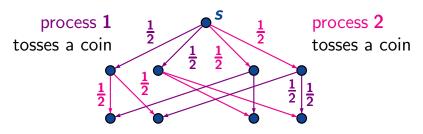
PMC-68

 modelling asynchronous distributed systems by interleaving

 modelling asynchronous distributed systems by interleaving



- modelling asynchronous distributed systems by interleaving
- useful for abstraction purposes
- representation of the interface with an unpredictable environment (e.g., human user)



PMC-69

$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

$$\mathcal{M} = (S, Act, P, AP, L)$$

+ initial state/distribution

finite state space 5

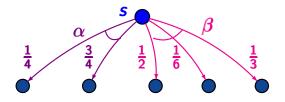
$$\mathcal{M} = (S, Act, P, AP, L)$$

+ initial state/distribution

- finite state space 5
- Act finite set of actions

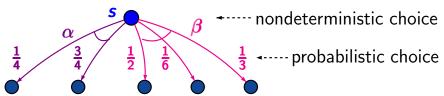
$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

- finite state space 5
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0, 1] \text{ s.t.}$ $\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s, \alpha, s') \in \{0, 1\}$



$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

- finite state space 5
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0, 1] \text{ s.t.}$ $\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s, \alpha, s') \in \{0, 1\}$

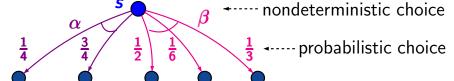


$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

- finite state space 5
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$ s.t.

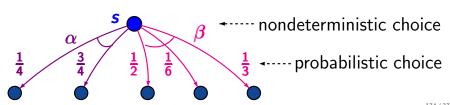
$$\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s, \alpha, s') \in \{0, 1\}$$

$$\alpha \notin Act(s) \ \alpha \in Act(s)$$



$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

- finite state space **S**
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$ s.t. $\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s,\alpha,s') \in \{0,1\}$ and $Act(s) \neq \emptyset$ $\alpha \notin Act(s)$ $\alpha \in Act(s)$



$$\mathcal{M} = (S, Act, P, AP, L)$$
 + initial state/distribution

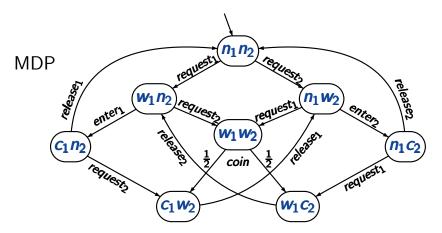
- finite state space 5
- Act finite set of actions
- $P: S \times Act \times S \rightarrow [0,1]$ s.t. $\forall s \in S \ \forall \alpha \in Act. \ \sum_{s' \in S} P(s,\alpha,s') \in \{0,1\}$ and $Act(s) \neq \emptyset$ $\alpha \notin Act(s)$ $\alpha \in Act(s)$
- AP set of atomic propositions
- labeling $L: S \to 2^{AP}$

- 2 concurrent processes P_1 , P_2 with 3 phases:
 - n_i noncritical actions of process P_i
 - w_i waiting phase of process P_i
 - c_i critical section of process P_i

- 2 concurrent processes P_1 , P_2 with 3 phases:
 - n_i noncritical actions of process P_i
 - w_i waiting phase of process P_i
 - c_i critical section of process P_i
- competition of both processes are waiting

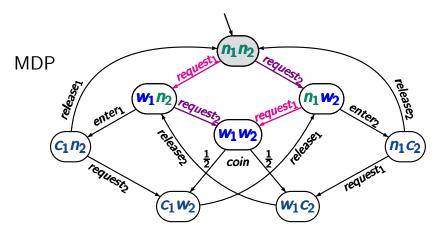
- 2 concurrent processes P_1 , P_2 with 3 phases:
 - n_i noncritical actions of process P_i
 - w_i waiting phase of process P_i
 - c_i critical section of process P_i
- competition of both processes are waiting
- resolved by a randomized arbiter who tosses a coin

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting



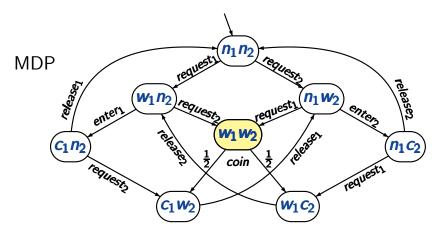
Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting



Randomized mutual exclusion protocol

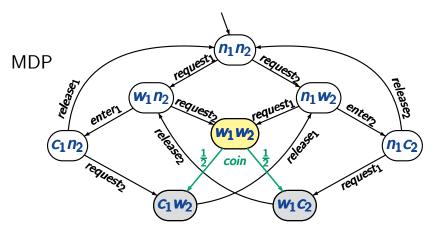
- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting

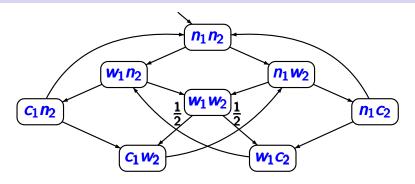


PMC-72

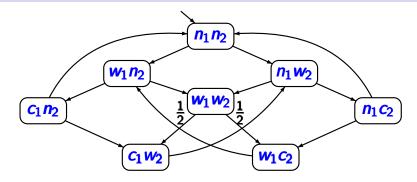
Randomized mutual exclusion protocol

- interleaving of the request operations
- competition if both processes are waiting
- randomized arbiter tosses a coin if both are waiting



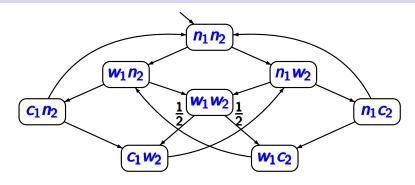


safety: the processes are never simultaneously in their critical section

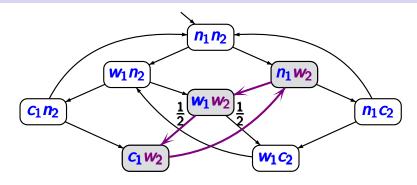


safety: the processes are never simultaneously in their critical section

holds on all paths as state $\langle c_1, c_2 \rangle$ is unreachable

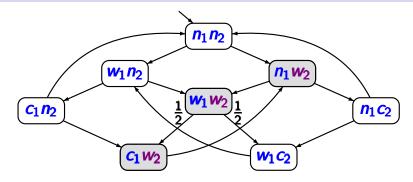


liveness: each waiting process will eventually enter its critical section



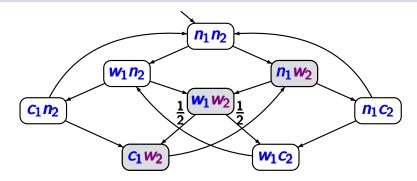
liveness: each waiting process will eventually enter its critical section

does not hold on all paths, but almost surely



Suppose process 2 is waiting.

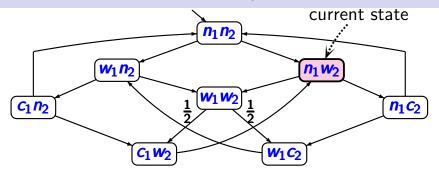
what is the probability that process 2 enters its critical section within the next 3 steps ?



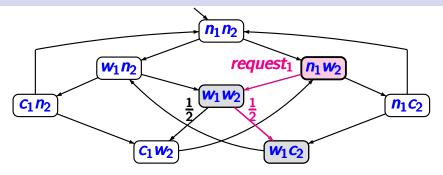
Suppose process 2 is waiting.

what is the probability that process 2 enters its critical section within the next 3 steps ?

... depends ...

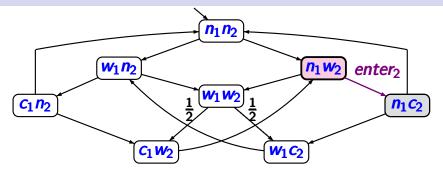


what is the probability that process 2 enters its critical section within the next 3 steps ?



what is the probability that process 2 enters its critical section within the next 3 steps ?

probability $\frac{1}{2}$ for the schedulers that choose process 1 in state $\langle n_1, w_2 \rangle$



what is the probability that process 2 enters its critical section within the next 3 steps ?

probability $\frac{1}{2}$ for the schedulers that choose process 1 in state $\langle n_1, w_2 \rangle$ probability 1 for the schedulers that choose process 2 in $\langle n_1, w_2 \rangle$

Reasoning about probabilities in MDP

requires resolving the nondeterminism by schedulers

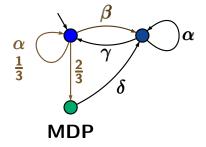
Reasoning about probabilities in MDP

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n

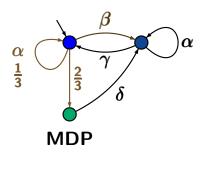
Reasoning about probabilities in MDP

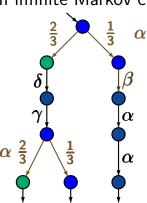
- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain

- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain



- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain





- requires resolving the nondeterminism by schedulers
- a scheduler is a function $D: S^* \longrightarrow Act$ s.t. action $D(s_0 \dots s_n)$ is enabled in state s_n
- each scheduler induces an infinite Markov chain

yields a notion of probability measure Pr^{D} on measurable sets of infinite paths

Tutorial: probabilistic model checking

- part 1: Markov chains probabilistic computation tree logic (PCTL/PCTL*)
- part 2: Markov decision processes (MDP)

 PCTL/PCTL* over MDP

 partial order reduction

 fairness

- syntax of state and path formulas as for PCTL* over Markov chains
- probability operator $\mathbb{P}_{\mathbf{I}}(\ldots)$ ranges over all schedulers

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$

path formulas:

$$\varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$

path formulas:

$$\varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

given an MDP \mathcal{M} , define by structural induction:

- a satisfaction relation |= for states s in M and PCTL* state formulas
- a satisfaction relation \models for infinite paths π in \mathcal{M} and PCTL* path formulas

```
s \models true
s \models a iff a \in L(s)
s \models \Phi_1 \land \Phi_2 iff s \models \Phi_1 and s \models \Phi_2
s \models \neg \Phi iff s \not\models \Phi
s \models \mathbb{P}_{\mathbf{I}}(\varphi) iff for all schedulers D:
\mathsf{Pr}^D \{ \pi \in \mathit{Paths}(s) : \pi \models \varphi \} \in \mathbf{I}
```

```
s \models true
s \models a
           iff a \in L(s)
s \models \Phi_1 \land \Phi_2 iff s \models \Phi_1 and s \models \Phi_2
             iff s \not\models \Phi
s \models \neg \Phi
s \models \mathbb{P}_{\mathbb{I}}(\varphi) iff for all schedulers D:
                              \Pr^{D}\{\pi \in Paths(s) : \pi \models \varphi\} \in I
```

prob. measure in the Markov chain induced by D

205 / 378

```
s \models true
s \models a
                       iff a \in L(s)
s \models \Phi_1 \land \Phi_2 iff s \models \Phi_1 and s \models \Phi_2
             iff s ⊭ Φ
s \models \neg \Phi
s \models \mathbb{P}_{\mathbb{I}}(\varphi) iff for all schedulers D:
                              \Pr^{D}\{\pi \in Paths(s) : \pi \models \varphi\} \in I
```

prob. measure in the Markov chain induced by D

semantics of path formulas as for Markov chains

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

PCTL* state formula ◆

task: check whether $\mathcal{M} \models \Phi$

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

PCTL* state formula ◆

task: check whether $\mathcal{M} \models \Phi$

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets

$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$

for all sub-state formulas Ψ of Φ

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

PCTL* state formula ◆

task: check whether $\mathcal{M} \models \Phi$

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets

$$Sat(\Psi) = \{ s \in S : s \models \Psi \}$$

for all sub-state formulas Ψ of Φ

treatment of the propositional logic fragment: $\sqrt{}$

Treatment of probability operator

Treatment of probability operator

upper probability bounds $\mathbb{P}_{\leq p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$

upper probability bounds $\mathbb{P}_{\leq p}(\varphi)$ or $\mathbb{P}_{\leq p}(\varphi)$

ullet compute the maximal probabilities for $oldsymbol{arphi}$

$$\mathsf{Pr}^{\mathcal{M}}_{\mathsf{max}}(s,\varphi) = \sup_{D} \, \mathsf{Pr}^{D} \big\{ \pi \in \mathit{Paths}(s) : \pi \models \varphi \big\}$$

for all states s

upper probability bounds $\mathbb{P}_{\leq p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$

ullet compute the maximal probabilities for $oldsymbol{arphi}$

$$\Pr_{\max}^{\mathcal{M}}(s,\varphi) = \max_{D} \Pr^{D}\{\pi \in Paths(s) : \pi \models \varphi\}$$

for all states s

upper probability bounds $\mathbb{P}_{\leqslant p}(\varphi)$

ullet compute the maximal probabilities for $oldsymbol{arphi}$

$$\Pr_{\max}^{\mathcal{M}}(s,\varphi) = \max_{\mathcal{D}} \Pr^{\mathcal{D}}\{\pi \in Paths(s) : \pi \models \varphi\}$$

for all states s

• return $\{s \in S : \Pr_{\max}^{\mathcal{M}}(s, \varphi) \leq p\}$

upper probability bounds $\mathbb{P}_{\leq p}(\varphi)$

ullet compute the maximal probabilities for $oldsymbol{arphi}$

$$\Pr_{\max}^{\mathcal{M}}(s,\varphi) = \max_{D} \Pr^{D}\{\pi \in Paths(s) : \pi \models \varphi\}$$

for all states s

• return $\{s \in S : \Pr_{\max}^{\mathcal{M}}(s, \varphi) \leq p\}$

lower probability bounds $\mathbb{P}_{\geqslant p}(\varphi)$ or $\mathbb{P}_{>p}(\varphi)$ analogous, but minimal probabilities for φ

upper probability bounds $\mathbb{P}_{\leq p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$ compute the maximal probabilities for φ $\Pr^{\mathcal{M}}_{\max}(s,\varphi) = \max_{D} \Pr^{D}\{\pi \in \textit{Paths}(s) : \pi \models \varphi\}$

for all states s

special case $\varphi = \Diamond \Psi$

upper probability bounds $\mathbb{P}_{\leqslant p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$ compute the maximal probabilities for φ $\Pr^{\mathcal{M}}_{\max}(s,\varphi) = \max_{\mathcal{D}} \Pr^{\mathcal{D}}\{\pi \in \textit{Paths}(s) : \pi \models \varphi\}$ for all states s

special case
$$\varphi = \lozenge \Psi$$
 compute $\Pr_{\max}^{\mathcal{M}}(s, \lozenge \Psi)$ by solving a linear program maximal reachability probabilities

upper probability bounds $\mathbb{P}_{\leqslant p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$ compute the maximal probabilities for φ $\Pr^{\mathcal{M}}_{\max}(s,\varphi) = \max_{\mathcal{D}} \Pr^{\mathcal{D}}\{\pi \in \textit{Paths}(s) : \pi \models \varphi\}$ for all states s

special case $\varphi = \lozenge \Psi$ compute $\Pr_{\max}^{\mathcal{M}}(s, \lozenge \Psi)$ by solving a linear program general case:

probabilities in the product

upper probability bounds $\mathbb{P}_{\leqslant p}(\varphi)$ or $\mathbb{P}_{< p}(\varphi)$ compute the maximal probabilities for φ $\text{Pr}^{\mathcal{M}}_{\max}(s,\varphi) = \max_{\mathcal{D}} \text{Pr}^{\mathcal{D}}\{\pi \in \textit{Paths}(s) : \pi \models \varphi\}$ for all states s

special case $\varphi = \lozenge \Psi$ compute $\Pr_{\max}^{\mathcal{M}}(s, \lozenge \Psi)$ by solving a linear program general case: via **DRA** for φ and maximal reachability given: MDP \mathcal{M} with state space S

set $T \subseteq S$ of goal states

task: compute $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T) = \max_{D} \Pr_{D}^{D}(s, \lozenge T)$

given: MDP \mathcal{M} with state space S

set $T \subseteq S$ of goal states

task: compute $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T) = \max_{D} \Pr_{D}^{D}(s, \lozenge T)$

The vector $(x_s)_{s \in S}$ is the least solution in [0,1] of the equation system

$$x_s = 1 \text{ if } s \in T$$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$

given: MDP \mathcal{M} with state space S

set $T \subseteq S$ of goal states

task: compute $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T) = \max_{D} \Pr_{D}^{D}(s, \lozenge T)$

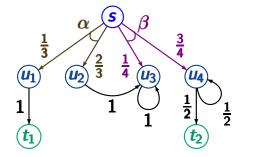
The vector $(x_s)_{s \in S}$ is the <u>least</u> solution in [0,1] of the equation system

$$x_s = 1 \text{ if } s \in T$$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$

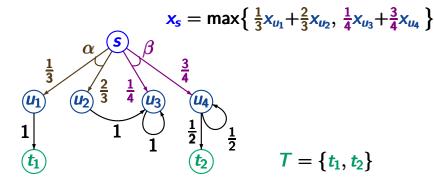
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



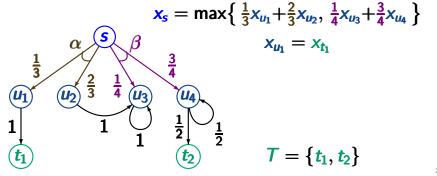
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



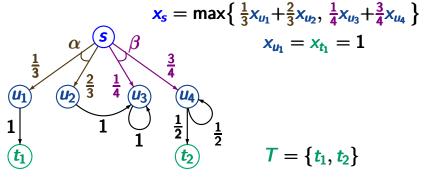
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



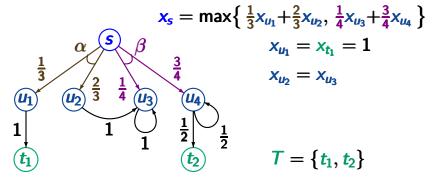
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



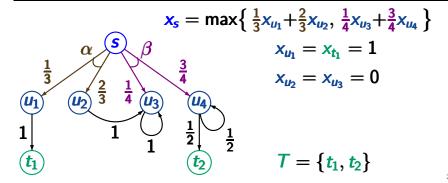
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



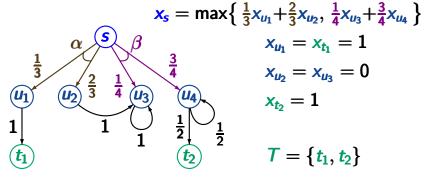
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



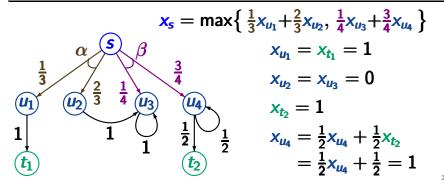
$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$



The vector $(x_s)_{s \in S}$ where $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T)$ is the least solution in [0, 1] of $x_c = 1$ if $s \in T$ $x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$

$$x_s = 1$$
 if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$

and the $\boxed{\text{unique}}$ solution in [0,1] of

$$x_s = 1$$
 if $s \in T$

 $x_s = 0$ if T is not reachable from s

$$x_s = \max \left\{ \sum_{s \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\}$$
 else

The vector
$$(x_s)_{s \in S}$$
 where $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T)$ is the least solution in $[0,1]$ of $x_s = 1$ if $s \in T$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$$
and the unique solution in $[0,1]$ of $x_s = 1$ iff $s \in S^1$ graph algorithms $x_s = 0$ iff $s \in S^0 = \{s : s \not\models \exists \lozenge T\}$

$$x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ else}$$

The vector
$$(x_s)_{s \in S}$$
 where $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T)$ is the least solution in $[0,1]$ of $x_s = 1$ if $s \in T$ $x_s = \max \left\{ \sum_{s' \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\}$ if $s \notin T$ and the unique solution in $[0,1]$ of $x_s = 1$ iff $s \in S^1$ $x_s = 0$ iff $s \in S^0 = \{s : s \not\models \exists \lozenge T\}$ if $s \in S^0$ if $s \in S^0$ if $s \in S^0$ if $s \in S^0$

 $\alpha \in Act(s)$

The vector $(x_s)_{s \in S}$ where $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T)$ is the least solution in [0, 1] of $x_c = 1$ if $s \in T$ $x_s = \max \left\{ \sum_{s \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$ and the unique solution in [0,1] of $x_s = 1$ iff $s \in S^1$ $x_s = 0$ iff $s \in S^0 = \{s : s \not\models \exists \lozenge T\}$ $x_s \ge \sum_{s' \in S^7} P(s, \alpha, s') \cdot x_{s'} + P(s, \alpha, S^1)$ where $\sum x_s$ is minimal if $s \in S^?$ $\alpha \in Act(s)$ The vector $(x_s)_{s \in S}$ where $x_s = \Pr_{\max}^{\mathcal{M}}(s, \lozenge T)$ is the least solution in [0, 1] of $x_s = 1$ if $s \in T$ $x_s = \max \left\{ \sum_{s \in S} P(s, \alpha, s') \cdot x_{s'} : \alpha \in Act(s) \right\} \text{ if } s \notin T$ and the unique solution in [0, 1] of linear program $x_s = 1$ iff $s \in S^1$ $x_s = 0 \text{ iff } s \in S^0 = \{s : s \not\models \exists \lozenge T\}$ $x_s \ge \sum_{s' \in S^2} P(s, \alpha, s') \cdot x_{s'} + P(s, \alpha, S^1)^{2}$ if $s \in S^2$ $\alpha \in Act(s)$ where $\sum x_s$ is minimal

Maximal probabilities for limit properties

given: MDP $\mathcal{M} = (S, P, ...)$

prefix-independent limit property *E* for paths

task: compute $Pr_{max}^{\mathcal{M}}(s, E)$

Maximal probabilities for limit properties

given: MDP
$$\mathcal{M} = (S, P, ...)$$
 prefix-independent limit property \mathbf{E} for paths

cask: compute $Pr_{max}^{\mathcal{M}}(s, E)$

i.e., there exists subsets T_1, \ldots, T_k of S s.t. for all paths π in M:

$$\pi \models E$$
 iff $\exists i \in \{1, \ldots, k\}$. $\inf(\pi) = T_i$

where
$$\inf(s_0 s_1 s_2 ...) = \{t \in S : \exists i \geq 0. s_i = t\}$$

End component

[de Alfaro'96]

PMC-79

An *end component* of M is a strongly connected sub-MDP

An end component of \mathcal{M} is a strongly connected sub-MDP, i.e., a pair (T, A) where $\emptyset \neq T \subseteq S$ and $A: T \to 2^{Act}$ s.t.

An end component of \mathcal{M} is a strongly connected sub-MDP, i.e., a pair (T, A) where $\emptyset \neq T \subseteq S$ and $A: T \to 2^{Act}$ s.t.

(1) enabledness of selected actions

(2) closed under probabilistic branching

(3) the underlying graph is strongly connected

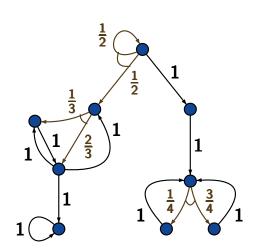
An end component of \mathcal{M} is a strongly connected sub-MDP, i.e., a pair (T, A) where $\emptyset \neq T \subseteq S$ and $A: T \to 2^{Act}$ s.t.

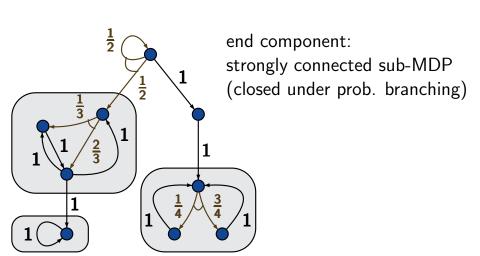
- (1) enabledness of selected actions $\emptyset \neq A(t) \subseteq Act(t)$ for all $t \in T$
- (2) closed under probabilistic branching

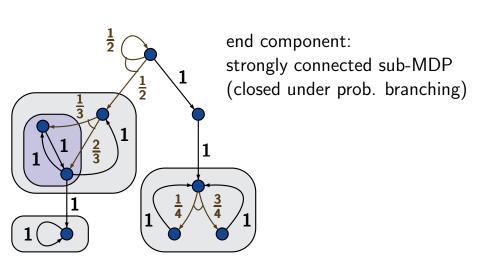
(3) the underlying graph is strongly connected

An end component of \mathcal{M} is a strongly connected sub-MDP, i.e., a pair (T, A) where $\emptyset \neq T \subseteq S$ and $A: T \to 2^{Act}$ s.t.

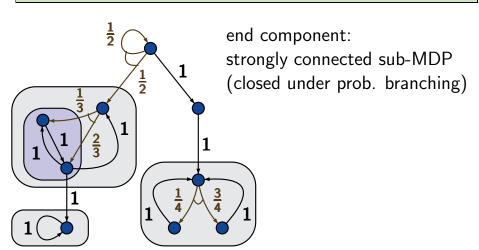
- (1) enabledness of selected actions $\emptyset \neq A(t) \subseteq Act(t)$ for all $t \in T$
- (2) closed under probabilistic branching $\forall t \in T \, \forall \alpha \in A(t). \, (P(t, \alpha, u) > 0 \longrightarrow u \in T)$
- (3) the underlying graph is strongly connected







For all schedulers D, almost surely an end component will be reached and all its states visited infinitely often



For all schedulers **D**, almost surely an end component will be reached and all its states visited infinitely often

-

i.e., for all schedulers D and states s:

$$\Pr^{D}\left\{ \pi \in Paths(s) : \begin{array}{c} \inf(\pi) \text{ constitutes an} \\ \text{end component} \end{array} \right\} = 1$$

For all schedulers **D**, almost surely an end component will be reached and all its states visited infinitely often

i.e., for all schedulers D and states s:

$$\Pr^{D}\left\{ \pi \in Paths(s) : \begin{array}{c} \inf(\pi) \text{ constitutes an} \\ \text{end component} \end{array} \right\} = 1$$

Let E be a limit property and $T_1, \ldots, T_k \subseteq S$ s.t.

$$\pi \models E$$
 iff $\exists i \geq 0$. $\inf(\pi) = T_i$

For all schedulers **D**, almost surely an end component will be reached and all its states visited infinitely often

$$\Pr^{D}\left\{ \pi \in Paths(s) : \begin{array}{c} \inf(\pi) \text{ constitutes an} \\ \text{end component} \end{array} \right\} = 1$$

Let E be a limit property and $T_1, \ldots, T_k \subseteq S$ s.t.

$$\pi \models E$$
 iff $\exists i \geq 0$. $\inf(\pi) = T_i$

Then: $Pr_{max}(s, E) = Pr_{max}(s, \lozenge T)$ where

$$T = \bigcup \{T_i : T_i \text{ constitutes an end component } \}$$

Let E be a Rabin condition $\bigvee_{1 \le i \le k} \Diamond \Box \neg L_i \land \Box \Diamond U_i$.

PMC-80B

Quantitative analysis of Rabin conditions

Let E be a Rabin condition $\bigvee_{1 \leq i \leq k} \Diamond \Box \neg L_i \land \Box \Diamond U_i$. Then:

$$Pr_{max}(s, E) = Pr_{max}(s, \lozenge accEC)$$

Let E be a Rabin condition $\bigvee_{1 \le i \le k} \Diamond \Box \neg L_i \land \Box \Diamond U_i$. Then:

$$\mathsf{Pr}_{\mathsf{max}}(s, E) = \mathsf{Pr}_{\mathsf{max}}(s, \lozenge \mathsf{accEC})$$

union of all end components T that "meet E", i.e., $\exists i \in \{1, ..., k\}$. $T \cap L_i = \emptyset$ and $T \cap U_i \neq \emptyset$

Let E be a Rabin condition $\bigvee_{1 \le i \le k} \Diamond \Box \neg L_i \land \Box \Diamond U_i$. Then:

$$\mathsf{Pr}_{\mathsf{max}}(s, E) = \mathsf{Pr}_{\mathsf{max}}(s, \lozenge \mathsf{accMEC})$$

 $\bigcup_{1 \leq i \leq k} \text{ maximal end components } T \text{ in } \mathcal{M} \setminus L_i$ s.t. $T \cap U_i \neq \emptyset$

Let E be a Rabin condition $\bigvee_{1 \le i \le k} \Diamond \Box \neg L_i \land \Box \Diamond U_i$. Then:

$$\mathsf{Pr}_{\mathsf{max}}(s, E) = \mathsf{Pr}_{\mathsf{max}}(s, \lozenge \mathsf{accMEC})$$

$$\bigcup_{1 \le i \le k} \text{maximal end components } T \text{ in } \mathcal{M} \setminus L_i$$
s.t. $T \cap U_i \ne \emptyset$

model checking algorithm for Rabin condition *E*:

- 1. compute the maximal end components
- check which of them fulfills E
- compute maximal reachability probabilities (linear program)

given: MDP $\mathcal{M} = (S, Act, P, ...)$

PCTL* star formula $\mathbb{P}_{\leqslant p}(\varphi)$

task: compute $Sat(\mathbb{P}_{\leq p}(\varphi))$

given: MDP $\mathcal{M} = (S, Act, P, ...)$

PCTL* star formula $\mathbb{P}_{\leqslant p}(\varphi)$

task: compute $Sat(\mathbb{P}_{\leq p}(\varphi))$

method: compute $x_s = \Pr_{max}^{\mathcal{M}}(s, \varphi)$ via reduction

to the probabilistic reachability problem

PMC-88

Summary: PCTL* model checking for MDP

given: MDP $\mathcal{M} = (S, Act, P, ...)$

PCTL* star formula $\mathbb{P}_{\leq p}(\varphi)$

task: compute $Sat(\mathbb{P}_{\leq p}(\varphi))$

method: compute $x_s = \Pr_{max}^{\mathcal{M}}(s, \varphi)$ via reduction

to the probabilistic reachability problem

1

using **DRA** $\mathcal A$ for φ and linear program for $\mathcal M \times \mathcal A$

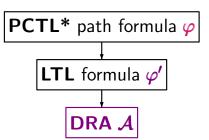
MDP **M**

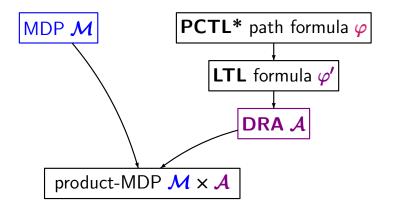
PCTL* path formula φ

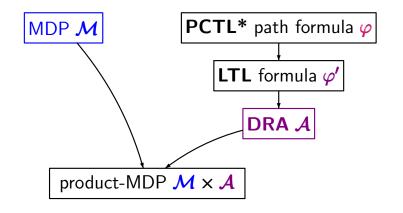
MDP \mathcal{M}

PCTL* path formula φ LTL formula φ'

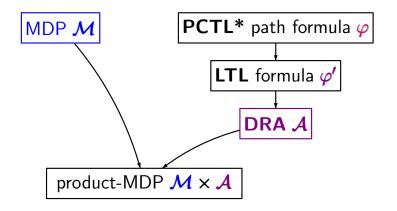
MDP \mathcal{M}





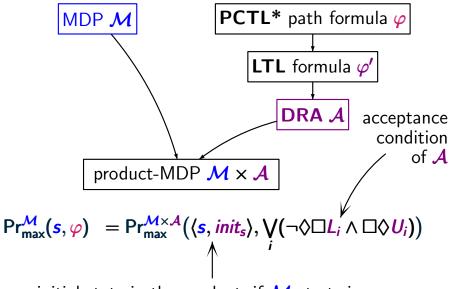


$$\mathsf{Pr}^{\mathcal{M}}_{\mathsf{max}}(s,\varphi) = \mathsf{Pr}^{\mathcal{M}\times\mathcal{A}}_{\mathsf{max}}(\langle s, \mathit{init}_s \rangle, \bigvee_i (\neg \Diamond \Box L_i \wedge \Box \Diamond U_i))$$

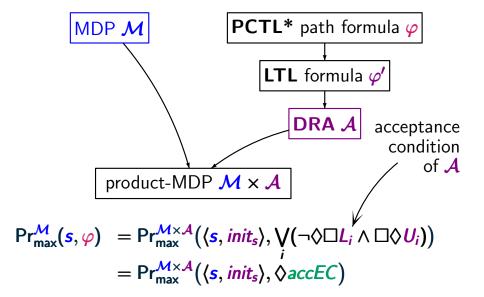


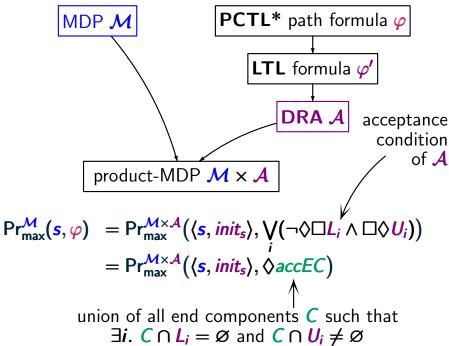
$$\mathsf{Pr}^{\mathcal{M}}_{\mathsf{max}}(s,\varphi) = \mathsf{Pr}^{\mathcal{M}\times\mathcal{A}}_{\mathsf{max}}(\langle s, \mathit{init}_s \rangle, \bigvee_{i} (\neg \Diamond \Box L_i \wedge \Box \Diamond U_i))$$

initial state in the product, if \mathcal{M} starts in s, i.e., $init_s = \delta(q_0, L(s))$



initial state in the product, if \mathcal{M} starts in s, i.e., $init_s = \delta(q_0, L(s))$





Complexity of PCTL/PCTL* model checking

PMC-94

	PCTL	PCTL*
Markov chain		
Markov decision process		

	PCTL	PCTL*
Markov chain	graph algorithms -	⊢ linear equation systems
Markov decision process	graph algorithms + linear program	

	PCTL	PCTL*
Markov chain	graph algorithms -	- linear equation systems PSPACE-complete [VARDI/WOLPER'86]
Markov decision process	graph algorithms + linear program	

Complexity of PCTL/PCTL* model checking

	PCTL	PCTL*
Markov chain	graph algorithms -	- linear equation systems **PSPACE - complete** [VARDI/WOLPER'86]
Markov decision process	graph algorithms + linear program PTIME 2EXP-complete [COURCOUBETIS/YANNAKAKIS'88]	

	PCTL	PCTL*
Markov chain	graph algorithms -	F linear equation systems PSPACE-complete [VARDI/WOLPER'86]
Markov decision process	graph algorithms + linear program PTIME 2EXP-complete [COURCOUBETIS/YANNAKAKIS'88]	

tools: e.g., PRISM (Oxford), MRMC (Aachen), LIQUOR (Dresden), ...

Tutorial: probabilistic model checking

- part 1: Markov chains probabilistic computation tree logic (PCTL/PCTL*)
- part 2: Markov decision processes (MDP) PCTL/PCTL* over MDP partial order reduction

fairness

Advanced techniques for PMC

several techniques to combat the state explosion problem

- symbolic model checking with variants of BDDs
 e.g., in PRISM [Kwiatkowska/Norman/Parker]
- state aggregation with bisimulation
 e.g., in MRMC [Katoen et al]
- abstraction-refinement

```
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter/Zhang]
```

partial order reduction

```
e.g., in LiQuor [Baier/Ciesinski/Größer]
```

- symbolic model checking with variants of BDDs
 e.g., in PRISM [Kwiatkowska/Norman/Parker]
- state aggregation with bisimulation
 e.g., in MRMC [Katoen et al]
- abstraction-refinement

```
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter/Zhang]
```

partial order reduction

```
e.g., in LiQuor [Baier/Ciesinski/Größer]
```

PMC-POR-02

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

technique for reducing the state space of concurrent systems [Godefroid, Peled, Valmari, ca. 1990]

- attempts to analyze a sub-system by identifying "redundant interleavings"
- explores representatives of paths that agree up to the order of independent actions

e.g.,
$$\underline{x := x+y}$$
 $\parallel \underline{z := z+3}$ action β
has the same effect as α ; β or β ; α

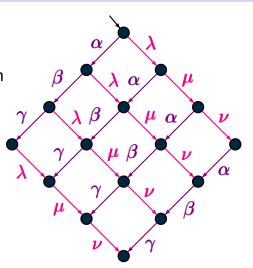
concurrent execution of processes P_1 , P_2

- no communication
- no competition

transition system for $P_1 \| P_2$ where

$$P_1 = \alpha; \beta; \gamma$$

$$P_2 = \lambda; \mu; \nu$$



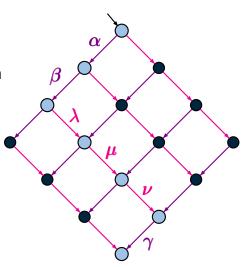
concurrent execution of processes P_1 , P_2

- no communication
- no competition

transition system for $P_1 \parallel P_2$ where

$$P_1 = \alpha; \beta; \gamma$$

$$P_2 = \lambda; \mu; \nu$$



idea: explore just 1 path as representative for all paths

task: generate a sub-system T_r by chosing appropriate

action sets $\emptyset \neq ample(s) \subseteq Act(s)$

task: generate a sub-system T_r by chosing appropriate

action sets $\emptyset \neq ample(s) \subseteq Act(s)$ s.t.

For each path π in T there exists a path π_r in T_r s.t. $\pi \equiv_{st} \pi_r$

stutter-equivalence, i.e.,

their traces agree up to repetition of state-labels

task: generate a sub-system T_r by chosing appropriate

action sets $\emptyset \neq ample(s) \subseteq Act(s)$ s.t.

For each path π in T there exists a path π_r in T_r s.t. $\pi \equiv_{st} \pi_r$

stutter-equivalence, i.e., their traces agree up to repetition of state-labels

Hence: T and T_r satisfy the same stutter-invariant linear-time properties, e.g., $LTL_{\setminus O}$ formulas

task: generate a sub-system T_r by chosing appropriate

action sets $\emptyset \neq ample(s) \subseteq Act(s)$ s.t.

For each path π in $\mathcal T$ there exists a path π_r in $\mathcal T_r$ s.t. $\pi \equiv_{st} \pi_r$

probabilistic case: generate a sub-MDP \mathcal{M}_r from \mathcal{M} s.t.

 \mathcal{M}_r and \mathcal{M} have the same extremal probabilities for stutter-invariant linear-time properties

task: generate a sub-system T_r by chosing appropriate

action sets $\emptyset \neq ample(s) \subseteq Act(s)$ s.t.

For each path π in $\mathcal T$ there exists a path π_r in $\mathcal T_r$ s.t. $\pi \equiv_{st} \pi_r$

probabilistic case: generate a sub-MDP \mathcal{M}_r from \mathcal{M} s.t.

For all schedulers D for M there is a scheduler D_r for M_r s.t. for all measurable, stutter-invariant events E:

$$\mathsf{Pr}^{D}_{\mathcal{M}}(\mathbf{E}) = \mathsf{Pr}^{D_{r}}_{\mathcal{M}_{r}}(\mathbf{E})$$

Independence of non-probabilistic actions

Actions α and β are called independent in a transition system T iff:

whenever $s \xrightarrow{\alpha} t$ and $s \xrightarrow{\beta} u$ then

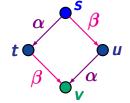
(1) α is enabled in u(2) β is enabled in t(3) if $u \xrightarrow{\alpha} v$ and $t \xrightarrow{\beta} w$ then v = w

Independence of non-probabilistic actions

Actions α and β are called independent in a transition system T iff:

whenever $s \xrightarrow{\alpha} t$ and $s \xrightarrow{\beta} u$ then

- (1) α is enabled in \boldsymbol{u}
- (2) β is enabled in t
- (3) if $\mathbf{u} \xrightarrow{\alpha} \mathbf{v}$ and $\mathbf{t} \xrightarrow{\beta} \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$



Let $\mathcal{M} = (S, Act, P, ...)$ be a MDP and $\alpha, \beta \in Act$.

 α and β are independent in \mathcal{M} if for each state s s.t. $\alpha, \beta \in Act(s)$:

- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- (3) ...

Let $\mathcal{M} = (S, Act, P, ...)$ be a MDP and $\alpha, \beta \in Act$.

 α and β are independent in \mathcal{M} if for each state s s.t. $\alpha, \beta \in Act(s)$:

- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- (3) for all states w:

$$P(s, \alpha\beta, w) = P(s, \beta\alpha, w)$$

Let $\mathcal{M} = (S, Act, P, ...)$ be a MDP and $\alpha, \beta \in Act$.

 α and β are independent in \mathcal{M} if for each state s s.t. $\alpha, \beta \in Act(s)$:

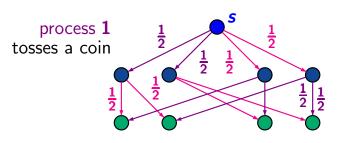
- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- (3) for all states w:

$$P(s, \alpha\beta, w) = P(s, \beta\alpha, w)$$

$$\sum_{t \in S} P(s, \alpha, t) \cdot P(t, \beta, w) \qquad \sum_{u \in S} P(s, \beta, u) \cdot P(u, \alpha, w)$$

 α and β are independent in \mathcal{M} if for each state s s.t. $\alpha, \beta \in Act(s)$:

- (1) if $P(s, \alpha, t) > 0$ then $\beta \in Act(t)$
- (2) if $P(s, \beta, u) > 0$ then $\alpha \in Act(u)$
- (3) for all states $w: P(s, \alpha\beta, w) = P(s, \beta\alpha, w)$



process 2 tosses a coin

$$(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$$

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions

1

i.e., have no visible effect on the labels of the states

- idea: use Peled's conditions for the ample sets
- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions
- (A2) dependency condition:

For each path $s \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} \xrightarrow{\beta}$ in \mathcal{M} s.t. β is dependent on some action in ample(s), there exists $i \in \{1, \dots, n\}$ with $\alpha_i \in ample(s)$

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions
- (A2) dependency condition:

```
For each path s \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} \xrightarrow{\beta} in \mathcal{M} s.t. \beta is dependent on some action in ample(s), there exists i \in \{1, \dots, n\} with \alpha_i \in ample(s)
```

Hence: if $\alpha \in ample(s)$ and $\beta \in Act(s) \setminus ample(s)$ then α and β are independent

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions
- (A2) dependency condition: ...
- (A3) cycle condition:

for each cycle $s_0 s_1 \dots s_n$ in \mathcal{M}_r and each action $\alpha \in \bigcap_{1 \le i \le n} Act(s_i)$ we have: $\alpha \in \bigcup_{1 \le i \le n} ample(s_i)$

- (A0) $\varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions
- (A2) dependency condition: ...
- (A3) cycle condition:

for each cycle $s_0 s_1 \dots s_n$ in \mathcal{M}_r and each action $\alpha \in \bigcap_{1 \le i \le n} Act(s_i)$ we have: $\alpha \in \bigcup_{1 \le i \le n} ample(s_i)$

By (A0)-(A3): for all paths π in \mathcal{M} there is a path π_r in \mathcal{M}_r with $\pi \equiv_{st} \pi_r$

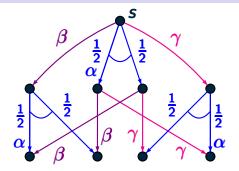
(A0)
$$\emptyset \neq ample(s) \subseteq Act(s)$$

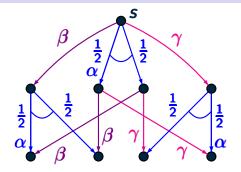
- (A1) stutter condition: if $ample(s) \neq Act(s)$ then all actions $\alpha \in ample(s)$ are stutter actions
- (A2) dependency condition: ...
- (A3) end component condition:

for each end component T in \mathcal{M}_r and each action $\alpha \in \bigcap_{t \in T} Act(t)$ we have: $\alpha \in \bigcup_{t \in T} ample(t)$

By (A0)-(A3): for almost all paths π in \mathcal{M} there is a path π_r in \mathcal{M}_r with $\pi \equiv_{st} \pi_r$

Peled's conditions (A0)-(A3) are not sufficient to preserve maximal reachability probabilities

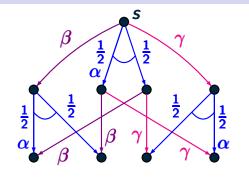


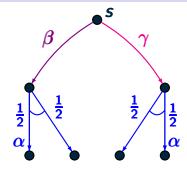


- α independent from β and γ
- α , β and γ are stutter actions

Partial order reduction for MDPs

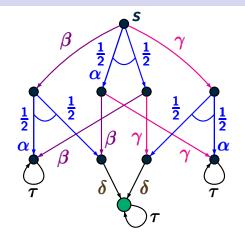
PMC-POR-08



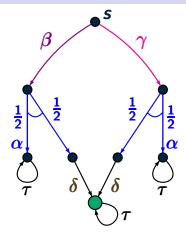


original MDP M

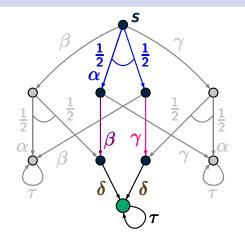
reduced MDP \mathcal{M}_r



original MDP M

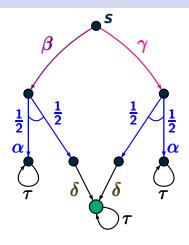


reduced MDP \mathcal{M}_r



original MDP M

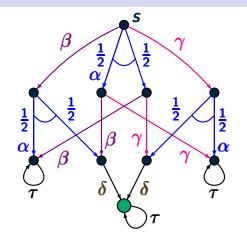
 $\mathsf{Pr}^{\mathcal{M}}_{\mathsf{max}}(s, \lozenge \mathit{green}) = 1$

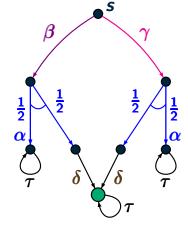


reduced MDP \mathcal{M}_r

Partial order reduction for MDPs

PMC-POR-08





original MDP M

reduced MDP \mathcal{M}_r

$$\mathsf{Pr}^{\mathcal{M}}_{\mathsf{max}}(s, \lozenge \mathit{green}) = 1 < \frac{1}{2} = \mathsf{Pr}^{\mathcal{M}_r}_{\mathsf{max}}(s, \lozenge \mathit{green})$$

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

```
(A4) if there is a path s \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} \xrightarrow{\beta} \text{ in } \mathcal{M}_r \text{ s.t.}
```

- $\alpha_1, \ldots, \alpha_n, \beta \notin ample(s)$ and
- β is probabilistic

then |ample(s)| = 1

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4)
$$|ample(s)| = 1$$
 or $ample(s) = Act(s)$

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4)
$$|ample(s)| = 1$$
 or $ample(s) = Act(s)$

If (A0)-(A4) hold then \mathcal{M} and \mathcal{M}_r have the same extremal probabilities for all LTL_{\O} formulas.

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4)
$$|ample(s)| = 1$$
 or $ample(s) = Act(s)$

If (A0)-(A4) hold then \mathcal{M} and \mathcal{M}_r satisfy the same $\mathsf{CTL}_{\setminus O}$ formulas [Gerth et al, 1995]

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4)
$$|ample(s)| = 1$$
 or $ample(s) = Act(s)$

If (A0)-(A4) hold then \mathcal{M} and \mathcal{M}_r satisfy the same PCTL_{\O} formulas ?

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

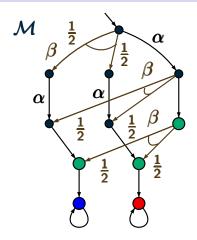
by the following branching condition

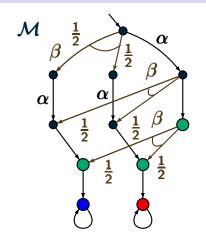
(A4)
$$|ample(s)| = 1$$
 or $ample(s) = Act(s)$

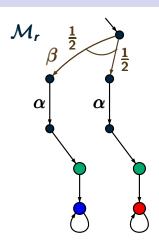
If (A0)-(A4) hold then \mathcal{M} and \mathcal{M}_r satisfy the same PCTL_{\O} formulas ?

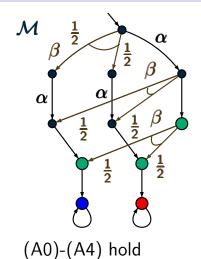
PMC-POR-19

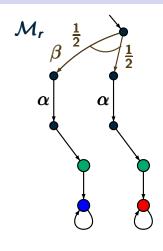
(A0)-(A4) not sufficient for PCTL

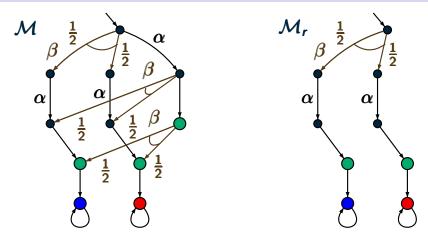












(A0)-(A4) hold, but $\mathcal{M} \not\models \Phi$ and $\mathcal{M}_r \models \Phi$ where

$$\Phi = \mathbb{P}_{=1}\Big(\Box\big(\textit{green} \to (\mathbb{P}_{=1}(\Diamond \textit{blue}) \vee \mathbb{P}_{=1}(\Diamond \textit{red}))\big)\Big)$$

extend Peled's conditions for the ample-sets

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4')
$$ample(s) = Act(s)$$
 or $ample(s) = {\alpha}$ for some nonprobabilistic action α

extend Peled's conditions for the ample-sets

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle or end component condition

by the following branching condition

(A4')
$$ample(s) = Act(s)$$
 or $ample(s) = {\alpha}$ for some nonprobabilistic action α

If (A0)-(A3) and (A4') hold then \mathcal{M} and \mathcal{M}_r are bisimilar and satisfy the same PCTL* $_{\backslash \bigcirc}$ formulas

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

• tries to define $ample(s) = Act_i(s)$ for some i

 $Act_i(s)$ = action set of process \mathcal{P}_i enabled in state s

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

• tries to define $ample(s) = Act_i(s)$ for some i

- $(A0) \quad \varnothing \neq ample(s) \subseteq Act(s)$
- (A1) stutter condition
- (A2) dependency condition
- (A3) cycle/end component condition
- (A4) branching condition

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

• tries to define $ample(s) = Act_i(s)$ for some i

$$(A0) \quad \varnothing \neq ample(s) \subseteq Act(s) \qquad \longleftarrow \boxed{\text{local}}$$

- (A1) stutter condition \leftarrow local
- (A2) dependency condition
- (A3) cycle/end component condition
- (A4) branching condition ← local

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

• tries to define $ample(s) = Act_i(s)$ for some i

(A0)
$$\varnothing \neq ample(s) \subseteq Act(s)$$
 \longleftarrow local

(A1) stutter condition \longleftarrow local

(A2) dependency condition \longleftarrow global in \mathcal{M}

(A3) cycle/end component condition \longleftarrow global in \mathcal{M}_r

(A4) branching condition \longleftarrow local

local

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

- tries to define ample(s) = Act_i(s) for some i
- checks local conditions (A0), (A1) and (A4)
- realizes stronger conditions than (A2) and (A3)

$$(A0) \quad \varnothing \neq ample(s) \subseteq Act(s) \qquad \longleftarrow \underline{| local |}$$

- (A1) stutter condition \leftarrow
- (A2) dependency condition \leftarrow global in \mathcal{M}
- (A3) cycle/end component condition \leftarrow global in \mathcal{M}_r
- (A4) branching condition ← local

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

- tries to define $ample(s) = Act_i(s)$ for some i
- checks local conditions (A0), (A1) and (A4)
- realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

(A3) cycle condition

suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

- tries to define $ample(s) = Act_i(s)$ for some i
- checks local conditions (A0), (A1) and (A4)
- realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

(A3) cycle condition

if DFS detects a backward edge $t \rightarrow s$ then ample(s) = Act(s) suppose \mathcal{M} is an MDP for $\mathcal{P}_1 \| \dots \| \mathcal{P}_n$

DFS-based on-the-fly generation of \mathcal{M}_r

- tries to define $ample(s) = Act_i(s)$ for some i
- checks local conditions (A0), (A1) and (A4)
- realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

replace with (A2) with a global dependency condition on the control flow graphs for $\mathcal{P}_1, \ldots, \mathcal{P}_n$

(A3) cycle condition

if DFS detects a backward edge $t \rightarrow s$ then ample(s) = Act(s)

Tutorial: probabilistic model checking

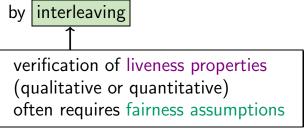
- part 1: Markov chains probabilistic computation tree logic (PCTL/PCTL*)
- part 2: Markov decision processes (MDP)
 PCTL/PCTL* over MDP
 partial order reduction
 MDP with fairness

- extend Markov chains by nondeterminism
- modelling asynchronous distributed systems by interleaving

- extend Markov chains by nondeterminism
- modelling asynchronous distributed systems by interleaving

verification of liveness properties (qualitative or quantitative) often requires fairness assumptions

- extend Markov chains by nondeterminism
- modelling asynchronous distributed systems



e.g., strong process fairness:

$$\square \lozenge \text{ process } P \\ \text{is enabled} \longrightarrow \square \lozenge \text{ actions of } P \\ \text{are taken}$$

- extend Markov chains by nondeterminism
- modelling asynchronous distributed systems by interleaving

verification of liveness properties (qualitative or quantitative) often requires fairness assumptions

general case: fairness assumptions impose restrictions on the resolution of nondeterminism to rule out unrealistic behaviors

given: MDP $\mathcal{M} = (S, Act, P, ...)$

A fairness assumption \mathcal{F} for \mathcal{M} is a conjunction of limit properties of the form:

unconditional fairness $\Box \Diamond V$

strong fairness $\Box \Diamond U \rightarrow \Box \Diamond V$

weak fairness $\Diamond \Box U \rightarrow \Box \Diamond V$

where $U, V \subseteq S$

given: MDP $\mathcal{M} = (S, Act, P, ...)$

A fairness assumption \mathcal{F} for \mathcal{M} is a conjunction of limit properties of the form:

unconditional fairness $\square \lozenge V$ strong fairness $\square \lozenge U \to \square \lozenge V$ weak fairness $\lozenge \square U \to \square \lozenge V$ where $U, V \subseteq S$

here: just state-based fairness conditions action-based fairness conditions can be added, e.g.,

 $\square \lozenge enabled(A) \rightarrow \square \lozenge taken(A)$ where $A \subseteq Act$

given: MDP
$$\mathcal{M} = (S, Act, P, ...)$$

A fairness assumption \mathcal{F} for \mathcal{M} is a conjunction of limit properties of the form:

unconditional fairness
$$\Box \Diamond V$$

strong fairness
$$\Box \Diamond U \rightarrow \Box \Diamond V$$

weak fairness
$$\Diamond \Box U \rightarrow \Box \Diamond V$$

where $U, V \subseteq S$

Scheduler **D** for \mathcal{M} is called \mathcal{F} -fair iff

$$Pr^{D}(s, \mathcal{F}) = 1$$
 for all reachable states s

Realizability of fairness assumptions

given: MDP $\mathcal{M} = (S, Act, P, ...)$ and a fairness assumption \mathcal{F} for \mathcal{M}

scheduler D is called \mathcal{F} -fair iff $\Pr^D(s,\mathcal{F})=1$ for all states $s\in S$

 \mathcal{F} is realizable iff there exists a \mathcal{F} -fair scheduler

given: MDP $\mathcal{M} = (S, Act, P, ...)$ and a fairness assumption \mathcal{F} for \mathcal{M}

scheduler D is called \mathcal{F} -fair iff $\Pr^D(s,\mathcal{F})=1$ for all states $s\in S$

 ${\mathcal F}$ is realizable iff there exists a ${\mathcal F}$ -fair scheduler iff ${\mathbf s} \models \exists \Diamond {\it FairMEC}$ for all ${\mathbf s} \in {\mathcal S}$

given: MDP $\mathcal{M} = (S, Act, P, ...)$ and a fairness assumption \mathcal{F} for \mathcal{M}

scheduler D is called \mathcal{F} -fair iff $\Pr^D(s,\mathcal{F})=1$ for all states $s\in S$

 \mathcal{F} is realizable iff there exists a \mathcal{F} -fair scheduler iff $s \models \exists \Diamond FairMEC$ for all $s \in S$

union of all maximal end components that contain a sub-component T where \mathcal{F} holds

given: MDP
$$\mathcal{M} = (S, Act, P, ...)$$
 and a fairness assumption \mathcal{F} for \mathcal{M} e.g., $\mathcal{F} = \Box \Diamond U \to \Box \Diamond V$ scheduler D is called \mathcal{F} -fair iff $\Pr^D(s, \mathcal{F}) = 1$ for all states $s \in S$

$$\mathcal{F}$$
 is realizable iff there exists a \mathcal{F} -fair scheduler iff $s \models \exists \Diamond FairMEC$ for all $s \in S$

union of all maximal end components that contain a sub-component T where \mathcal{F} holds, i.e.,

$$U \cap T = \emptyset$$
 or $V \cap T \neq \emptyset$

```
given: MDP \mathcal{M} = (S, Act, P, ...) and a fairness assumption \mathcal{F} for \mathcal{M} e.g., \mathcal{F} = \Box \Diamond U \to \Box \Diamond V scheduler D is called \mathcal{F}-fair iff \Pr^D(s, \mathcal{F}) = 1 for all states s \in S
```

 ${\mathcal F}$ is realizable iff there exists a ${\mathcal F}$ -fair scheduler iff ${\pmb s} \models \exists \Diamond {\it FairMEC}$ for all ${\pmb s} \in {\pmb S}$

poly-time algorithm for computing FairMEC:

... recursive computation of maximal end components in sub-MDPs ...

syntax of state and path formulas as before

- syntax of state and path formulas as before
- semantics as for standard PCTL* over MDP, but:

$$s \models_{\mathcal{F}} \mathbb{P}_{\mathrm{I}}(\varphi)$$
 iff for all \mathcal{F} -fair schedulers D : $\mathrm{Pr}^D(s,\varphi) \in \mathrm{I}$

- syntax of state and path formulas as before
- semantics as for standard PCTL* over MDP, but:

$$s \models_{\mathcal{F}} \mathbb{P}_{\mathrm{I}}(\varphi)$$
 iff for all \mathcal{F} -fair schedulers D : $\mathsf{Pr}^D(s,\varphi) \in \mathrm{I}$

simple cases: e.g., if \mathcal{F} is realizable then

$$s \models_{\mathcal{F}} \mathbb{P}_{\leqslant p}(\lozenge b)$$
 iff $s \models \mathbb{P}_{\leqslant p}(\lozenge b)$

- syntax of state and path formulas as before
- semantics as for standard PCTL* over MDP, but:

```
s \models_{\mathcal{F}} \mathbb{P}_{\mathrm{I}}(\varphi) iff for all \mathcal{F}-fair schedulers D: \mathsf{Pr}^{D}(s,\varphi) \in \mathrm{I}
```

simple cases: e.g., if \mathcal{F} is realizable then

$$s \models_{\mathcal{F}} \mathbb{P}_{\leqslant \rho}(\lozenge b)$$
 iff $s \models \mathbb{P}_{\leqslant \rho}(\lozenge b)$

but
$$s \models_{\mathcal{F}} \mathbb{P}_{\geqslant p}(\lozenge b)$$
 iff $s \not\models \mathbb{P}_{\geqslant p}(\lozenge b)$ is possible

- syntax of state and path formulas as before
- semantics as for standard PCTL* over MDP, but:

$$s \models_{\mathcal{F}} \mathbb{P}_{\mathrm{I}}(\varphi)$$
 iff for all \mathcal{F} -fair schedulers D : $\mathsf{Pr}^{D}(s,\varphi) \in \mathrm{I}$

simple cases: e.g., if \mathcal{F} is realizable then

$$s \models_{\mathcal{F}} \mathbb{P}_{\leqslant p}(\lozenge b) \quad \text{iff} \quad s \models_{\mathbb{F}_{p}}(\lozenge b)$$
but $s \models_{\mathcal{F}} \mathbb{P}_{\geqslant p}(\lozenge b) \quad \text{iff} \quad s \not\models_{\mathbb{F}_{p}}(\lozenge b) \quad \text{is possible}$

$$s \models_{\mathcal{F}} \mathbb{P}_{\geqslant p}(\lozenge b) \quad \text{iff}$$

$$s \models_{\mathbb{F}_{p}} \mathbb{P}_{\geqslant p}(\lozenge b) \quad \text{iff}$$

PCTL* model checking for MDP with fairness

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

fairness assumption ${\cal F}$

PCTL* state formula ◆

task: check whether $\mathcal{M} \models_{\mathcal{F}} \Phi$

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

fairness assumption ${\cal F}$

PCTL* state formula ◆

task: check whether $\mathcal{M} \models_{\mathcal{F}} \Phi$

main procedure as for standard PCTL*:

recursively compute the satisfaction sets

$$Sat_{\mathcal{F}}(\Psi) = \left\{ s \in S : s \models_{\mathcal{F}} \Psi \right\}$$

for all sub-state formulas Ψ of Φ

given: MDP $\mathcal{M} = (S, Act, P, AP, L, s_0)$

fairness assumption \mathcal{F}

PCTI * state formula •

task: check whether $\mathcal{M} \models_{\mathcal{F}} \Phi$

main procedure as for standard **PCTL***:

recursively compute the satisfaction sets

$$Sat_{\mathcal{F}}(\Psi) = \{s \in S : s \models_{\mathcal{F}} \Psi\}$$

for all sub-state formulas Ψ of Φ

treatment of the propositional logic fragment: $\sqrt{}$

Probabilistic operator under fairness

given: MDP $\mathcal{M} = (S, Act, P, ...)$ with

realizable fairness assumption ${\mathcal F}$

PCTL* star formula $\mathbb{P}_{\leqslant p}(\varphi)$

task: compute $Sat_{\mathcal{F}}(\mathbb{P}_{\leqslant p}(\varphi))$

Probabilistic operator under fairness

given: MDP $\mathcal{M} = (S, Act, P, ...)$ with

realizable fairness assumption ${\mathcal F}$

PCTL* star formula $\mathbb{P}_{\leqslant p}(\varphi)$

task: compute $Sat_{\mathcal{F}}(\mathbb{P}_{\leq p}(\varphi))$

method: compute

$$x_s = \max_{D \text{ is fair}} \Pr^D(s, \varphi)$$

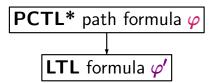
via reduction to the probabilistic reachability problem

using **DRA** \mathcal{A} for φ and linear program for $\mathcal{M} \times \mathcal{A}$

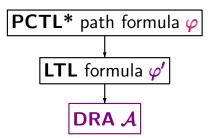
MDP \mathcal{M} with fairness \mathcal{F}

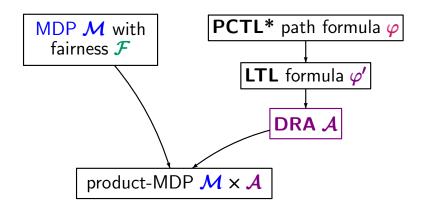
PCTL* path formula φ

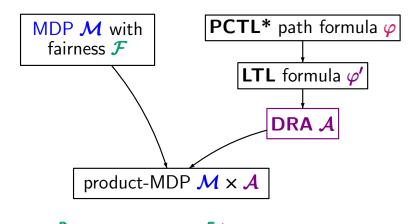
MDP \mathcal{M} with fairness \mathcal{F}

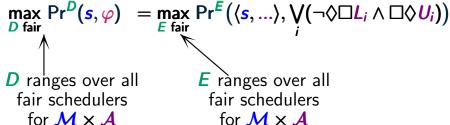


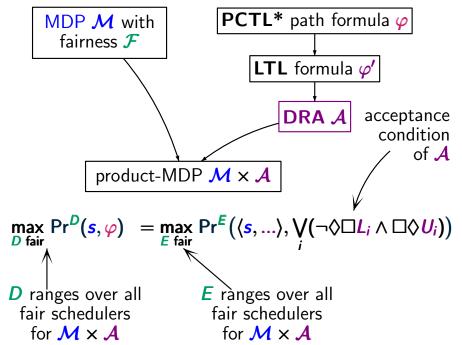
MDP \mathcal{M} with fairness \mathcal{F}

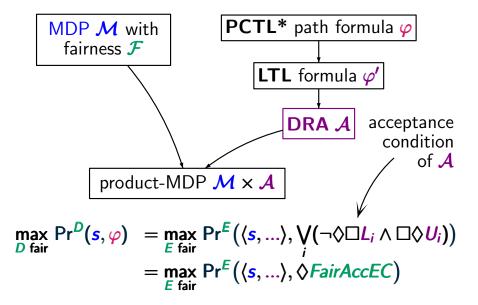


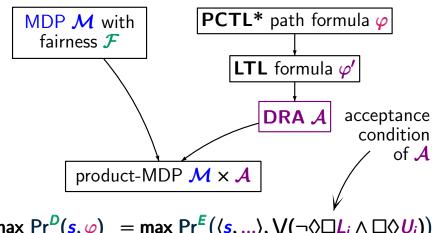






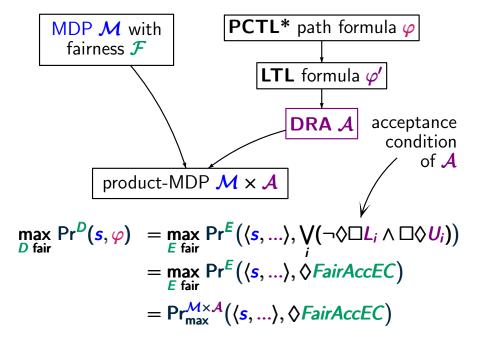






$$\max_{D \text{ fair}} \Pr^{D}(s, \varphi) = \max_{E \text{ fair}} \Pr^{E}(\langle s, ... \rangle, \bigvee_{i} (\neg \Diamond \Box L_{i} \wedge \Box \Diamond U_{i}))$$
$$= \max_{E \text{ fair}} \Pr^{E}(\langle s, ... \rangle, \Diamond FairAccEC)$$

union of all maximal end components that contain a fair sub-component C s.t. $\exists i. C \cap L_i = \emptyset$ and $C \cap U_i \neq \emptyset$



Conclusion

QMC-PMC-CONC

- model checking for systems with discrete probabilities
 - techniques for verifying non-probabilistic systems (graph algorithms, automata, ...)
 - numerical methods for solving linear equation systems (Markov chains) linear programs (MDP)

- model checking for systems with discrete probabilities
 - * techniques for verifying non-probabilistic systems (graph algorithms, automata, ...)
 - numerical methods for solving linear equation systems (Markov chains) linear programs (MDP)
- to combat the state explosion problem

```
* symbolic MTBDD-based PRISM [Kwiatk. et al]
```

* partial order reduction LiQuor [Baier et al]

* abstraction, bisimulation MRMC [Katoen et al] refinement RAPTURE [d'Argenio et al]

PASS [Hermanns et al]

Probabilistic Model Checking

Christel Baier
Technical University Dresden

Joost-Pieter Katoen RWTH Aachen

David Parker
University of Oxford

Model Checking Continuous-Time Markov Chains

Joost-Pieter Katoen RWTH Aachen