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Probability elsewhere

e randomized algorithms [RABIN’1960]
fingerprints, input sampling, breaking symmetry, ...
models: discrete-time Markov chains (DTMC)

Markov decision processes (MDP)
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Probability elsewhere

randomized algorithms [RABIN’1960]

fingerprints, input sampling, breaking symmetry, ...

models: discrete-time Markov chains (DTMC)
Markov decision processes (MDP)

performance modeling [ERLANG 1907]
emphasis on steady-state and transient measures
models: continuous-time Markov chains

stochastic control theory [BELLMAN 1957]
operations research
models: Markov decision processes

modelling biological systems, security protocols
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Model Checking

reactive
system

abstract
model M

PMC-04

requirements

|

specification, e.g.,
temporal formula ®

~N

model checker

does M [= @ hold ?

no / \yes
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Model Checking

reactive
system

abstract
model M

~N

PMC-04

functional
requirements

specification, e.g.,
temporal formula ®

model checker
does M [= @ hold ?

/N

no + counterexample

yes + witness
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Probabilistic model checking

probabilistic quantitative

reactive system requirements
probabilistic specification, e.g.,
model M temporal formula ®

~N

probabilistic model checker
does M = ® hold ?

/N

no + counterexample yes + witness
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Probabilistic model checking

probabilistic quantitative

reactive system requirements
probabilistic specification, e.g.,
model M temporal formula ®

~N

probabilistic model checker
quantitative analysis of M against ®

!
probability for “bad behaviors” is < 1078

probability for “good behaviors” is 1
expected costs for ....
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Probabilistic model checking

probabilistic quantitative

reactive system requirements
probabilistic formula ® of some
model M probabilistic logic

~N

probabilistic model checker
quantitative analysis of M against ®

!
probability for “bad behaviors” is < 1078

probability for “good behaviors” is 1
expected costs for ....
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Probabilistic model checking

probabilistic quantitative

reactive system requirements
probabilistic formula ® of some
model M probabilistic logic

~N

probabilistic model checker
quantitative analysis of M against ®

quantitative analysis relies on a combination of

e model checking techniques
e known concepts for stochastic models
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Probabilistic model checking

probabilistic quantitative

reactive system requirements
probabilistic formula ® of some
model M probabilistic logic

~N

probabilistic model checker
quantitative analysis of M against ®

logical approach ~» unambiguous measure specifications
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Probabilistic model checking

probabilistic

reactive system

probabilistic
model M

AN

PMC-06

quantitative
requirements

formula ® of some
probabilistic logic

y

probabilistic model checker
quantitative analysis of M against ®

logical approach ~» unambiguous measure specifications

model checking ~~» automatic computation of
quantitative measures (probabilities, expectation)




Tutorial: probabilistic model checking

part 1:

part 2:

Markov chains

probabilistic computation tree logic
(PCTL/PCTL¥)

Markov decision processes (MDP)
PCTL/PCTL* over MDP

partial order reduction for MDP
MDP with fairness

OVERVIEW-MC
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Markov chain

is a transition system with probabilities
for the successor states
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Markov chain

M=(S,P, ... )

e state space S
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Markov chain

M=(S,P, ... )

e state space S «—

PMC-12

here: finite
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Markov chain

M=(S,P, ... )

e state space S «— here: finite
e transition probability function P: S x S — [0,1] s.t.

> P(s,s') =1

s'eS
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Discrete-time Markov chain

M=(S,P, ... )

e state space S «— here: finite
e transition probability function P: S x § — [0,1] s.t.

> P(s,s) =1
s'eS
T

discrete-time or time-abstract
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Discrete-time Markov chain

M =(S,P,AP,L)

e state space S «— here: finite

e transition probability function P: S x S — [0,1] s.t.
> P(s,s)=1
s'es

e AP set of atomic propositions

e labeling function L : § — 24°
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Discrete-time Markov chain

M

+ initial distribution
or initial state

=(S,P,AP, L) —

state space S
transition probability function P: S x § — [0,1] s.t.

> P(s,s) =1
s'es
AP set of atomic propositions

labeling function L: § — 24P
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Discrete-time Markov chain

M =(S,P,AP, L)

e state space S

e transition probability function P: S x S — [0,1] s.t.

> P(s,s') =1

s'eS

start

—

PMC-12

+
or

initial distribution
initial state

message
lost

delivered
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Discrete-time Markov chain

_ + initial distribution
M =(5,P,AP, L) | or initial state

e state space S
e transition probability function P: S x S — [0,1] s.t.

> P(s,s') =1

s'eS

e.g., AP = {try, del}

message
lost

%]
start

delivered
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Probability measure of a Markov chain
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Probability measure of a Markov chain

M = (S,P,AP, L, py) Markov chain
T

initial distribution pp : S — [0, 1]
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Probability measure of a Markov chain

M = (S,P,AP, L, py) Markov chain
T

initial distribution pp : S — [0, 1]

probability measure for sets of paths:
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Probability measure of a Markov chain

M = (S,P,AP, L, py) Markov chain
T

initial distribution pp : S — [0, 1]

probability measure for sets of paths:

consider the o-algebra generated by cylinder sets

A(sos1...5,) = set of infinite paths
50 51 - - - SnSn+1 Sn+2 Sn+3- - -

finite path
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Probability measure of a Markov chain

M = (S,P,AP, L, py) Markov chain
T

initial distribution pp : S — [0, 1]

probability measure for sets of paths:

consider the o-algebra generated by cylinder sets

A(sos1...5,) = set of infinite paths
50 51 - - - SnSn+1 Sn+2 Sn+3- - -

finite path

probability measure is given by:

PM(A(sos1...50)) = po(So)-IH P(si-1, si)
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Example PMC-16

probability for delivering the message within 5 steps:

31/378



Example PMC-16

probability for delivering the message within 5 steps:
= PrM(start try del) + Pr™(start try lost try del)
= 0.98 + 0.02-0.98 = 0.9996
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Example PMC-16

probability for eventually delivering the message:
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Example PMC-16

probability for eventually delivering the message:

= Y PM(start try (lost try)" del)
n=0

= 3 0.02"-098 = 1
n=0
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Fundamental property of finite Markov chains ...

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.
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Fundamental property of finite Markov chains ...

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

PrM{soslsg...:ElizoElBSCC C s.t.
Vi>i.sie C AN Vse CoEloj.sjzs}:l
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Fundamental property of finite Markov chains ...

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

PrM{soslsg...:ElizoElBSCC C s.t.
Vi>i.sie C AN Vse CoEloj.sjzs}:l
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Fundamental property of finite Markov chains ...

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

PrM{505152...:EIiZOEIBSCC C s.t.
Vi>i.sie C AN Vse CoEloj.sjzs}:l

] 2 BSCCs
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Tutorial: probabilistic model checking —

part 1: Markov chains

probabilistic computation tree logic +«—
(PCTL/PCTL¥)

part 2: Markov decision processes (MDP)
PCTL/PCTL* over MDP
partial order reduction
fairness
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Probabilistic computation tree logic

40/378



Probabilistic computation tree logic

PCTL/PCTL* [Hansson /Jonsson 1994]
e probabilistic variants of CTL/CTL*

e contains a probabilistic operator P
to specify lower/upper probability bounds
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Probabilistic computation tree logic

PCTL/PCTL* [Hansson /Jonsson 1994]

probabilistic variants of CTL/CTL*

contains a probabilistic operator P
to specify lower/upper probability bounds

operators for expected costs, long-run averages, ...
not considered here, but can be added
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Syntax of PCTL*

state formulas:
¢ = true | a | P, APy | - |

path formulas:

p = ...
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Syntax of PCTL*

state formulas:
¢ u= true | a| DA D, | 0 | Pi(p)

path formulas:

Qp = ...

where a € AP is an atomic proposition
I C [0,1] is a probability interval
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Syntax of PCTL*

state formulas:
¢ u= true | a| DA D, | 0 | Pi(p)

path formulas:

Qp = ...

where a € AP is an atomic proposition
I C [0,1] is a probability interval

qualitative properties: Poo(p) or Poy(p)
quantitative properties: e.g., Psgs(¢) or P<g.01(¢)
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA Dy | 2 | Pi(y)
path formulas:

p = 1’|<P1/\<P2|"<P|

state formula
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA Dy | 2 | Pi(y)

path formulas:

o =0 |piAp| 0| Op| ...

(O = next
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA Dy | 2 | Pi(y)

path formulas:

o =0 |pAp2| 0| Op| 1V

(O = next U= until
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA Dy | 2 | Pi(y)

path formulas:

o =0 |pAp2| 0| Op| 1V

o

state formula @—O—0O—0O—0O—0O
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA Dy | 2 | Pi(y)

path formulas:

o =0 |pAp2| 0| Op| 1V

¢
state formula @

O
O
O
O

M)
/
next operator a

Oa O

O
O
O
O
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Syntax of PCTL* path formulas s

state formulas:
® = true | a| DA D, | 0 | Pi(p)

path formulas:

¢ = O |pAp | 9| Op| p1Ups

O
O
O
O

state formula

QOa

until operator

aUb o—0—0 @

¢
@—O
next operator a
Oo—@
a a

O
= O
O
O

O
O
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Derived path operators: eventually, always ...
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Derived path operators: eventually, always

PMC-28

state formulas:
¢ = true | a| O A Dy | 20 | Pi(y)
path formulas:

o u= & | oA | —p | Op | prUes

until operator a a a b

aUb o—0—0—0 OO0 —0O—--

eventually b

ob¥ trueup O—O—0O0—@—0O—0O—--
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Derived path operators: eventually, always

PMC-28

state formulas:
¢ = true | a| O A Dy | 20 | Pi(y)
path formulas:

o u= & | oA | —p | Op | prUes

until operator a a a b
aUb o—0—0—0—0O—0O—---
eventually b

ob¥ trueup O—O—0O0—@—0O—0O—--

always a a a a a a
def O—O0—0—0—0—0— -
Oa = =0-a
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Semantics of PCTL* o

55 /378



Semantics of PCTL* o

Let M = (S, P, AP, L) be a Markov chain.

define by structural induction:

e a satisfaction relation |= for
states s € S and PCTL* state formulas

e a satisfaction relation |= for infinite
path fragments o in M and PCTL* path formulas
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Semantics of PCTL* o

s [ true
skEa

sfE -
sEPIAD,

s = Pi(y)

iff ae L(s)

iff shE®

iff sk ®; ands = ®,
iff  PrM(s,p) €l
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Semantics of PCTL*

PMC-30

s [ true
skEa

sfE -
sEPIAD,

s = Pi(y)

iff ae L(s)

iff shE®

iff sfE®; ands

iff | PrM(s, p)
*

@2

el

probability measure of the set of paths m

when s is viewed as the unique starting state

with m = ¢
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Semantics of PCTL* path formulas -

let T = 5951 5 53... be an infinite path in M
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Semantics of PCTL* path formulas -

let T = 5951 5 53... be an infinite path in M

T
T p
T = 01 A @2
T Oy
T = p1U s

iff
iff
iff
iff
iff

sofFE®

T @

T 1 and T | @2
s1983...F ¢

there exists ¢ > 0 such that

StSe41St42--- = @2
Si Si+1Si42- - - |=g01 for0<i</?
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Examples for PCTL*-specifications 38
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Examples for PCTL*-specifications o

communication protocol:

]PSO.OOI( ()error )
P_;( O( try_to_send — Pq9(Odelivered) ) )
P_;( O( try_-to_send — —start U delivered )
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Examples for PCTL*-specifications

PMC-35

communication protocol:

]Pgo.om( ()error )
P_;( O( try_to_send — Pq9(Odelivered) ) )
P_;( O( try_-to_send — —start U delivered )

leader election protocol for n processes in a ring

e each process chooses a random number in
{1,...,k} asid
all ids are synchronously passed around the ring

if there is a unique id then elect the process
with the max. unique id, otherwise repeat

P_;( Oleader_elected ), Psoo \/ O'leader_elected )

isn 63/378



PCTL* model checking o]
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PCTL* model checking

Markov chain M
with initial state s

PMC-40

PCTL* state
formula ®

AN pd

model checking

check wether sp |= ®

/

no

AN

yes
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PCTL* model checking e

Markov chain M PCTL¥* state
with initial state sp formula ¢

AN pd

model checking
check wether sp |= ®

/ N

no yes

idea: recursively compute Sat(V) = {s:s | V}
for all sub-state formulas W of ® and
check whether sy € Sat(®)
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Recursive computation of the satisfaction sets ...
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Recursive computation of the satisfaction sets ...

Sat(true) = § state space of M
Sat(a) = {seS:a€el(s)}
Sat(P;AP,) = Sat(P,) N Sat(P,)
Sat(—®P) = S\ Sat(d)
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Recursive computation of the satisfaction sets ...

Sat(true) = § state space of M
Sat(a) = {seS:a€el(s)}
Sat(P;AP,) = Sat(P,) N Sat(P,)
Sat(—®P) = S\ Sat(d)

Sat(Pi(p)) = {seS§: PrM(s,¢) € 1}
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Recursive computation of the satisfaction sets ...

Sat(true) = § state space of M
Sat(a) = {seS:a€el(s)}
Sat(P1APy) = Sat(P;) N Sat(dy)
Sat(—®P) = S\ Sat(d)

Sat(Pi(¢)) = {s€S:PM(s,p) e}

special case: ¢ = Q&
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Recursive computation of the satisfaction sets ...

Sat(true) = § state space of M
Sat(a) = {seS:a€el(s)}
Sat(P;AP,) = Sat(P,) N Sat(P,)
Sat(—®P) = S\ Sat(d)

Sat(Pi(p)) = {s€S:PM(s,p) eI}

special case: ¢ = Q&
1. compute recursively Sat(®)

2. compute x; = PrM(s, O®) by solving a
linear equation system
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Simulating a dice by a coin [Knuth] e

N =
NI=
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Simulating a dice by a coin [Knuth] e

N =
NI=

o U O U U U

probability for the outcome six
PM(O six )= 7
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Simulating a dice by a coin [Knuth] e

outcome six unreachable




Simulating a dice by a coin [Knuth] e

outcome six unreachable,
e, xs=0




Simulating a dice by a coin [Knuth] e

Xsix = 1

outcome six unreachable,
e, xs=0




Simulating a dice by a coin [Knuth]

PMC-43

X1=?
X2=?
X3=?
xsix=]-

outcome six unreachable,
e, xs=0
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Simulating a dice by a coin [Knuth] e

1
X1 = §X2

X2=?
X3=?
xsix=]-

outcome six unreachable,
e, xs=0
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Simulating a dice by a coin [Knuth]

PMC-43

X1 = 5X2

Xsix = 1

outcome six unreachable,
e, xs=0
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Simulating a dice by a coin [Knuth]

PMC-43

1
X1 = §X2

1
Xo = §X3

1 1
X3=§X2+5

outcome six unreachable,
e, xs=0
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PMC-43

NI O O
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Simulating a dice by a coin [Knuth] e

1 1

X]_=§X2=6

1 1

X2 =3X3=3
1 1 _ 2
=30t =3

xsix=]-

1-1 o X 0
M : D) 1

Pro(0six) 0 1-1]-[x]=(o0
_X1_6 0—% 1 X3 %
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PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed
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PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:
® = true |a| O A D, | =D | Pi(y)

path formulas:

e == Q¢ |d.U,
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PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:

® = true |a| O A D, | =D | Pi(y)
path formulas:

p = Q¢ |dUd, |0 | Od

Pi(0®) & Py(trueU o)
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PCTL

PMC-46

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:

® = true |a| O A D, | =D | Pi(y)
path formulas:

p = Q¢ |dUd, |0 | Od

Pi(0®) & Py(trueU o)

eg., Peoa(@0) & Pug(0-0)
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PCTL

PMC-46

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:
b = true | a | b, A D) | P | Pi(p)
path formulas:
e u= Q| o Ud, | 0o |O0
Pi(0®) & Py(trueU o)
e.g., Peoa(00) “Tf P.0.6(0®)

note: Pr'(s, 00) 1 — PM(s, 0—d)
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PCTL model checking
given: Markov chain M = (S, P, AP, L, s)

PCTL state formula ®
task:  check whether M = ®
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PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s = W} for all subformulas W of ¢
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PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s | W} for all subformulas W of ¢
T

in bottom-up manner, i.e., inner subformulas first
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PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s | W} for all subformulas W of ¢

e treatment of propositional logic fragment:
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PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s = W} for all subformulas W of ¢

e treatment of propositional logic fragment: obvious

Sat(true) = S

Sat(a) {seS:ael(s)}
Sat(—V) S\ Sat(V¥)

Sat(W1 AW,) = Sat(V;) N Sat(Vy)

92/378




PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s | W} for all subformulas W of ¢

e treatment of propositional logic fragment:  obvious

e treatment of the probability operator Py(¢p)
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PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s | W} for all subformulas W of ¢

e treatment of propositional logic fragment:  obvious

e treatment of the probability operator Py(¢p)

compute PrM(s, ¢) for all states s and return
Sat(Pi(p)) = {s € S: PM(s,p) € I}
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Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}
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Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW

compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)
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Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW

compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)

until operator, i.e., ¢ = W; UVy:
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Treatment of the probabilistic operator in PCTL ..

c-48

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW

compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)

until operator, i.e., ¢ = W; UV;,: compute
={seS:x;,=0}
={seS:x,=1}

98 /378



Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW

compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)

until operator, i.e., ¢ = W; UV;,: compute
={s€S:x=0} ={s:sEIV,UV,}
={seS:x,=1}
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Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW

compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)

until operator, i.e., ¢ = W; UV;,: compute
={s€S:x=0} ={s:sEIV,UV,}
={se€S:x =1} = {s:s £ I(~-V,)US°}
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Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW
compute x; = P(s,Sat(V)) = Y. P(s,s)
s'eSat(V)
until operator, i.e., ¢ = W; UV;,: compute
={s€S:x=0} ={s:sEIV,UV,}
={se€S:x =1} = {s:s £ I(~-V,)US°}
and solve the linear equation system

= Y P(s,s) - x¢ + P(s, Sat(V,)) for s € S?

s’eS?

101 /378



Treatment of the probabilistic operator in PCTL ...

compute xs = PrM(s, ¢) for all states s and return
Sat(Pi(p)) ={seS:x eI}

next operator, i.e., ¢ = QW e

compute x; = P(s, Sat(V)) O(poly(size(M)))

until operator, i.e., ¢ = W; UV;,: compute
={s€S:x=0} ={s:sEIV,UV,}
={se€S:x =1} = {s:s £ I(~-V,)US°}
and solve the linear equation system

= Y P(s,s) - x¢ + P(s, Sat(V,)) for s € S?

s’eS?
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PCTL* model checking oot
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PCTL* model checking o1

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®
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PCTL* model checking o1

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s | W} for all sub-state formulas W
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PCTL* model checking o1

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s | W} for all sub-state formulas W

e propositional logic fragment: 4/

e probability operator Py(¢)
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PCTL* model checking oot

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s |= W} for all sub-state formulas W
e propositional logic fragment: 4/

e probability operator Py(¢)

replace the PCTL* formula ¢ with an LTL formula ¢’

path formula without state formulas Py(...)




PCTL* model checking

PMC-51

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s |= W} for all sub-state formulas W
e propositional logic fragment: 4/

e probability operator Py(¢)

replace the PCTL* formula ¢ with an LTL formula ¢’
compute PrM(s, ¢') for all states s and return
Sat(Pi(p)) = {s € S: PM(s,¢') € 1}




PCTL* model checking exobi

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s | W} for all sub-state formulas W

treatment of subformulas W = Py(¢)

PCTL* path formula ¢ ~~ LTL formula ¢’

by replacing each maximal state-subformula of ¢
with a fresh atomic proposition
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PCTL* model checking exobi

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) ={s € S : s | W} for all sub-state formulas W

treatment of subformulas W = Py(¢)

PCTL* path formula ¢ ~~ LTL formula ¢’
()(aU ]P207(|:|0b) N |:| ]P<0_3(O|:|C) )

10/378




PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of

PMC-51A

Sat(V) ={s € S : s | W} for all sub-state formulas W

treatment of subformulas W = Py(¢)

PCTL* path formula ¢ ~~ LTL formula ¢’

{)(aU

P5o.7(00b)

AO

]P<0.3(ODC )

)
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PCTL* model checking

PMC-51A

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of

Sat(V) ={s € S : s | W} for all sub-state formulas W

treatment of subformulas W = Py(¢)

PCTL* path formula ¢ ~~ LTL formula ¢’

{)(aU

]PZQJ(DOb) A O ]P<0_3(ODC)

(}(aUd A I:Ie)

)
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PCTL* model checking ot

PCTL* formula Py(¢p)

Markov
chain M

~

probabilistic model checker

l

probability that ¢ holds for M
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PCTL* model checking ot

PCTL* formula Py(¢p)

}
LTL formula ¢’

Markov
chain M

~

probabilistic model checker

l

probability that ¢ holds for M
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PCTL* model checking ot

PCTL* formula Py(¢p)

}
LTL formula ¢’

Markov }
chain M

w-automaton A for ¢’

d

probabilistic model checker

probability that ¢ holds for M
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PCTL* model checking w2

PCTL* formula Py(¢p)

}
LTL formula ¢’

Markov }
chain M deterministic

w-automaton A for ¢’

d

probabilistic model checker

probability that ¢ holds for M
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PCTL* model checking w2

PCTL* formula Py(¢p)

}
LTL formula ¢’
Markov }
chain M deterministic Rabin

automaton A for ¢’

d

probabilistic model checker

l

probability that ¢ holds for M
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Deterministic Rabin automata (DRA)
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Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

Q finite state space

qo € Q initial state

2 alphabet

0: Q XX — @ deterministic transition function
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Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

Q finite state space

qo € Q initial state

2 alphabet

0: Q XX — @ deterministic transition function

acceptance condition Acc is a set of pairs (L, U)
with L, U C Q
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Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

Q finite state space

qo € Q initial state

2 alphabet

0: Q XX — @ deterministic transition function
acceptance condition Acc is a set of pairs (L, U)

with L, U C Q, say Acc = {(L1, V1), ..., (Lk, Ux)}
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Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

Q finite state space

qo € Q initial state

2 alphabet

0: Q XX — @ deterministic transition function
acceptance condition Acc is a set of pairs (L, U)

with L, U C Q, say Acc = {(L1, V1), ..., (Lk, Ux)}

semantics of the acceptance condition:

V (OD—IL, A DOU,)

1<i<k
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Accepted language of a DRA

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

e @ finite state space, qp initial state, X alphabet
o §:Q XX — @ transition function
e Acc= {(Ll, Ul), ceey (Uk, Uk)} with L;, U; C Q

accepted language:

L,(A) = {o € T¥: the run for o in A fulfills Acc }
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Accepted language of a DRA

A DRA is a tuple A = (Q, X, 6, qo, Acc) where

e @ finite state space, qp initial state, X alphabet
o §:Q XX — @ transition function
e Acc= {(Ll, Ul), ceey (Uk, Uk)} with L;, U; C Q

accepted language:

L,(A)={o€X¥ therunforogin A fl:iin”S Acc }

|
fp=qoq1q>...is the run forcd = Ag A1 As.... then
die{l,....k}.inf(p)NL;=a Ainf(p)NU; # 2

where inf(p) = {q €Q :%Io feN. qg= qg}
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Example: DRA

@@

O f O

B A

PMC-54B

Acc = {({q0}, {a:})}



Example: DRA

@@ Acc = {({qo}, {@m }}

' B ' = 00-qo A OOq

B A
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Example: DRA

W @) Ac={{ah @)}

' B ' = 00-q0 A OOq

B A
accepted language: (A+ B)*A¥
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Example: DRA

@-@ Acc = {({qo}, {a1})}

' B ' = 00-q0 A OOq

accepted language: (A+ B)*A¥

A
O~ Acc ={(2,{am})}
T

A
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Example: DRA

@-@ Acc = {({qo}, {a1})}

' B ' = 00-q0 A OOq

accepted language: (A+ B)*A¥

— @) Ac—{@{a})

g B ' = 00q
B

A

129/378



Example: DRA

W @) Ac={{ah @)}

' B ' = 00-q0 A OOq

B A
accepted language: (A+ B)*A¥

W @) Ac={@.{a})

' B ' = 00q

B A
accepted language: (B*A)“
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Fundamental result: LTL-2-DRA
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢}
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))

Example: AP = {a, b}

acceptance condition:
O0=qo A O0q
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))

Example: AP = {a, b} ~ ¥ = {@,{a}, {b}, {a, b}}

acceptance condition:
O0=qo A O0q
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))

Example: AP = {a, b} ~ ¥ = {@,{a}, {b}, {a, b}}

acceptance condition:
O0=qo A O0q

LTL formula $O(a A —b)
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))

Example: AP = {a, b} ~ ¥ = {@,{a}, {b}, {a, b}}

a acceptance condition:

(G0 (@)  oO~q A O0ao
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Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A)={oceX¥: 0 ¢} and |A| = O(2exp(|¢]))

Example: AP = {a, b} ~ ¥ = {@,{a}, {b}, {a, b}}

a acceptance condition:

(G0 (@)  oO~q A O0ao
' bA=a . LTL formula

—a ~bva Oa— ¢(bA-a)) A OO-a
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PCTL* model checking S

PCTL* formula Py(¢p)

Markov
chain M

~

probabilistic model checker

probability that ¢ holds for M
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PCTL* model checking S

PCTL* formula Py(¢p)

}
LTL formula ¢’
Markov }
chain M deterministic Rabin

automaton A for ¢’

d

probabilistic model checker

probability that ¢ holds for M
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PCTL* model checking S

PCTL* formula Py(¢p)

}
LTL formula ¢’
Markov }
chain M deterministic Rabin

automaton A for ¢’

d

probabilistic model checker

quantitative analysis in M x A

l

probability that ¢ holds for M
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Product of a Markov chain and a DRA
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal:  define a Markov chain M x A
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal:  define a Markov chain M x A such that

PrM(s, A) = PrM{7r € Paths(s) : trace(r) € L,(A)}

can be derived by a probabilistic reachability analysis
in the product-chain M x A
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal:  define a Markov chain M x A

path m
in M

P
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal:  define a Markov chain M x A

path run for trace(m)
in M in A
S0 0
4 | L(=)
| | L(s1)
52 q2
f [t
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal:  define a Markov chain M x A

path path in run for trace(m)
in M Mx A in A
C
sl (S0, q1) | L(s0)
S
| s, @) e | L(s1)
) Lo T g2
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)

Markov chain M x A= (S x Q,P',...) where
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)

Markov chain M x A= (S x Q,P',...) where

ey = (£ L0000
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Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L, s)
DRA A = (Q, 247, 8, qo, Acc)

Markov chain M x A= (S x Q,P',...) where

ey = (£ LG 010)

initial state of M x A: (s9,(qo, L(50)))
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})

given state s € S, let gs = 6(qo, L(s))
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})

given state s € S, let gs = 6(qo, L(s))

PM(s, A) = P4 ((s,q5), V (0O-L AOOU)))

1<i<k
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})

given state s € S, let gs = 6(qo, L(s))

PM(s, A) = P4 ((s,q5), V (0O-L AOOU)))

1<i<k

= PM*4((s, g5}, 0accBSCC)
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})

given state s € S, let gs = 6(qo, L(s))

PM(s, A) = P4 ((s,q5), V (0O-L AOOU)))

1<i<k

= PrMXA((s, ds), (}accBSCC)
1

I
union of accepting bottom strongly connected component
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Fundamental property of the product

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
where Acc = {(L;, U;) : 1 <i < k})

given state s € S, let gs = 6(qo, L(s))

PM(s, A) = P4 ((s,q5), V (0O-L AOOU)))

1<i<k
= PM*4((s, g5}, 0accBSCC)
T

I
union of accepting bottom strongly connected component,

i.,e., BSCCs C in M x A s.t.
die{l,... . k}.CnLi=aANCNU##2
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Summary: PCTL* model checking -

given: Markov chain M = (S, P, AP, L, s)
PCTL*-state formula ®
task:  check whether M = ®

model checking relies on recursive computation of
Sat(V) = {s € S : s = W} for all sub-state formulas W
e propositional logic fragment: obvious, as for PCTL

e probability operator Pr(¢p)

via DRA for ¢ and reduction to a
probabilistic reachability analysis in the product
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. PCTL* formula Py(¢)
Markov chain
M= (S, P, AP, L) 1

LTL formula ¢’

DRA A

e

[probabilistic model checkerj

analysis of the product

return Sat(Pi(p)) = {s € S : xs € I where

5= (s,6(qo, L(s)))}

158 /378



PCTL* f la P
Markov chain ormue I((P)

M= (S5,P,AP,L) l
LTL formula ¢

DRA A

i

product-Markov chain M'= M x A
compute the accepting BSCCs of M’
compute x; = PrM'(E, QaccBSCC)

return Sat(Pi(p)) = {s € S : xs € I where

5= (s,6(qo, L(s)))}
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. PCTL* formula Py(¢)
Markov chain
M= (S, P, AP, L) 1

LTL formula ¢’

DRA A

e

probabilistic reachability analysis
in the product-Markov chain M x A

complexity: O( poly(|M|, |A]))

return Sat(Pi(p)) = {s € S : xs € I where

5= (s,6(qo, L(s)))}
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Markov chain

M =(S,P,AP,L)

PCTL* formula Py(¢)

i
LTL formula ¢’

2exp in ¢
DRA A

rd

probabilistic reachability analysis
in the product-Markov chain M x A

complexity: O( poly(|M|, |A]))

return Sat(Pi(p)) = {s € S : xs € I where

5= (s,0(q0, L(s)))}
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Tutorial: probabilistic model checking —

part 1: Markov chains

probabilistic computation tree logic
(PCTL/PCTL¥)

part 2: Markov decision processes (MDP)  «—
PCTL/PCTL* over MDP
partial order reduction
fairness
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Markov decision processes (MDP) e
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Markov decision processes (MDP) e

extend Markov chains by nondeterminism
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Markov decision processes (MDP) e

extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by interleaving
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Markov decision processes (MDP) e

extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by interleaving

process 2
tosses a coin

process 1
tosses a coin
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Markov decision processes (MDP) e

extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by interleaving

e useful for abstraction purposes

e representation of the interface with an unpredictable
environment (e.g., human user)

process 2
tosses a coin

process 1
tosses a coin
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Markov decision process (MDP) 9

M = (S, Act, P, AP, L) + initial state/distribution
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Markov decision process (MDP) 9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S
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Markov decision process (MDP) 9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S

e Act finite set of actions
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Markov decision process (MDP) c9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S

e Act finite set of actions
¢ P:SXActxS—1[0,1] s.t.
Vs€S Va € Act. ). P(s,a,s') € {0,1}

s'eS
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Markov decision process (MDP) c9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S
e Act finite set of actions
¢ P:SXActxS—1[0,1] s.t.
Vs€S Va € Act. ). P(s,a,s') € {0,1}

s'eS

i -neee- nondeterministic choice

% ------ probabilistic choice
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Markov decision process (MDP) c9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S
e Act finite set of actions
¢ P:SXActxS—1[0,1] s.t.
Vs€S Va € Act. ). P(s,a,s') € {0,1}

s'eS /l v\
a ¢ Act(s) a € Act(s)

i -neee- nondeterministic choice

% ------ probabilistic choice
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Markov decision process (MDP) c9

M = (S, Act, P, AP, L) + initial state/distribution

e finite state space S

e Act finite set of actions
¢ P:SXActxS—1[0,1] s.t.
Vs€S Va € Act. ). P(s,a,s') € {0,1}

s'eS /N
and Act(s) # @ a ¢ Act(s) a € Act(s)

S

i -neee- nondeterministic choice

% ------ probabilistic choice
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Markov decision process (MDP) c9

M

= (S, Act, P, AP, L) + initial state/distribution
finite state space S

Act finite set of actions

P:SxActxS—[0,1] s.t.

Vs€S Va € Act. ). P(s,a,s') € {0,1}

s'eS /N
and Act(s) # @ a ¢ Act(s) a € Act(s)

AP set of atomic propositions
labeling L : § — 24F
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Randomized mutual exclusion protocol
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Randomized mutual exclusion protocol

e 2 concurrent processes P;, P, with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;
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Randomized mutual exclusion protocol

e 2 concurrent processes P;, P, with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;

e competition of both processes are waiting
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Randomized mutual exclusion protocol

e 2 concurrent processes P;, P, with 3 phases:

n; noncritical actions of process P;
w; waiting phase of process P;
¢; critical section of process P;

e competition of both processes are waiting

e resolved by a randomized arbiter who tosses a coin
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Randomized mutual exclusion protocol

e interleaving of the request operations
e competition if both processes are waiting
e randomized arbiter tosses a coin if both are waiting
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Randomized mutual exclusion protocol

interleaving

of the request operations

competition if both processes are waiting

randomized arbiter tosses a coin if both are waiting
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Randomized mutual exclusion protocol

interleaving of the request operations

competition

if both processes are waiting

randomized arbiter tosses a coin if both are waiting
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Randomized mutual exclusion protocol

e interleaving of the request operations
e competition if both processes are waiting

e |randomized arbiter| tosses a coin if both are waiting
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Properties of the randomized MUTEX
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Properties of the randomized MUTEX

safety: the processes are never simultaneously
in their critical section
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Properties of the randomized MUTEX

safety: the processes are never simultaneously
in their critical section

holds on all paths as state {ci, &) is unreachable
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Properties of the randomized MUTEX

liveness: each waiting process will eventually
enter its critical section
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Properties of the randomized MUTEX

liveness: each waiting process will eventually
enter its critical section

does not hold on all paths, but almost surely
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Properties of the randomized MUTEX

Suppose process 2 is waiting.

what is the probability that process 2 enters
its critical section within the next 3 steps ?
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Properties of the randomized MUTEX

Suppose process 2 is waiting.

what is the probability that process 2 enters
its critical section within the next 3 steps ?

... depends ...
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Randomized mutual exclusion protocol
current state

what is the probability that process 2 enters
its critical section within the next 3 steps ?
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Randomized mutual exclusion protocol

what is the probability that process 2 enters
its critical section within the next 3 steps ?

probability % for the schedulers that choose
process 1 in state {m, w)
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Randomized mutual exclusion protocol

what is the probability that process 2 enters
its critical section within the next 3 steps ?

probability % for the schedulers that choose
process 1 in state {m, w)

probability 1 for the schedulers that choose
process 2 in {ny, w)
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D (sp...sp) is enabled in state s,
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D (sp...sp) is enabled in state s,

e cach scheduler induces an infinite Markov chain
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D (sp...sp) is enabled in state s,

e cach scheduler induces an infinite Markov chain

MDP
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D (sp...sp) is enabled in state s,

e cach scheduler induces an infinite Markov chain

MDP
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Reasoning about probabilities in MDP

e requires resolving the nondeterminism by schedulers

e a scheduler is a function D : §* — Act s.t.
action D (sp...sp) is enabled in state s,

e cach scheduler induces an infinite Markov chain

I

yields a notion of probability measure Pr
on measurable sets of infinite paths

D
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Tutorial: probabilistic model checking ovenviEw-ar2

part 1: Markov chains

probabilistic computation tree logic
(PCTL/PCTL¥)

part 2: Markov decision processes (MDP)
PCTL/PCTL* over MDP —
partial order reduction
fairness
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PCTL* over MDPs [Bianco/de Alfaro’95] s

e syntax of state and path formulas as for PCTL*
over Markov chains

e probability operator P((...) ranges over all schedulers
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PCTL* over MDPs [Bianco/de Alfaro’95] s

state formulas:
® = true | a| D1 A D, | = | Pi(y)
path formulas:

¢ =0 |oAp| -0 | Op | 1V
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PCTL* over MDPs [Bianco/de Alfaro’95] s

state formulas:
® = true | a| D1 A D, | = | Pi(y)
path formulas:

¢ =0 |oAp| -0 | Op | 1V

given an MDP M, define by structural induction:

e a satisfaction relation |= for
states s in M and PCTL* state formulas

e a satisfaction relation |= for infinite
paths m in M and PCTL* path formulas
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Satisfaction relation for PCTL* state formulas ...

s | true

skEa iff a € L(s)
sE®PIAD, iff sE® and sE®;
sE-o iff sp®

s EPi(p) iff for all schedulers D:
PrP{m € Paths(s) : m |z ¢} €1

204 /378



Satisfaction relation for PCTL* state formulas ...

s | true

skEa iff a € L(s)
sE®PIAD, iff sE®; and s,
s iff s

s EPi(p) iff for all schedulers D:
Pr?{m € Paths(s) : m |z ¢} €1

prob. measure in the Markov chain induced by D
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Satisfaction relation for PCTL* state formulas ...

s | true

skEa iff a € L(s)
sE®PIAD, iff sE®; and s,
s iff s

s EPi(p) iff for all schedulers D:
Pr?{m € Paths(s) : m |z ¢} €1

prob. measure in the Markov chain induced by D

semantics of path formulas as for Markov chains
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PCTL* model checking for MDP x4
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PCTL* model checking for MDP x84

given: MDP M = (S, Act, P, AP, L, s)
PCTL¥* state formula ®

task:  check whether M |= ®
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PCTL* model checking for MDP x4

given: MDP M = (S, Act, P, AP, L, s)
PCTL¥* state formula ®

task:  check whether M |= ®

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets
Sat(W)={seS:sEV}

for all sub-state formulas W of ®
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PCTL* model checking for MDP x4

given: MDP M = (S, Act, P, AP, L, s)
PCTL¥* state formula ®

task:  check whether M |= ®

main procedure as for PCTL* over Markov chains:

recursively compute the satisfaction sets
Sat(W)={seS:sEV}

for all sub-state formulas W of ®

treatment of the propositional logic fragment: 4/

210/378



Treatment of probability operator
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Treatment of probability operator

upper probability bounds ng(w) or lP’<,,(<p)
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Treatment of probability operator

upper probability bounds ng(w) or lP’<,,(<p)

e compute the maximal probabilities for ¢
Prit(s,¢) = sup Pr’{m € Paths(s) : 7 |= ¢}
D

for all states s
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Treatment of probability operator

upper probability bounds ng(w) or lP’<,,(<p)

e compute the maximal probabilities for ¢
Proe(s, ¢) = max Pr?{m € Paths(s) : 7 |= ¢}

for all states s
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Treatment of probability operator

upper probability bounds ng(w)
e compute the maximal probabilities for ¢
PrM (s,0) = max Pr?{m € Paths(s) : 7 |= ¢}
for all states s
o return {s € S:Pril (s,¢) < p}
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Treatment of probability operator

upper probability bounds ng(w)
e compute the maximal probabilities for ¢
PrM (s,0) = max Pr?{m € Paths(s) : 7 |= ¢}
for all states s
o return {s € S:Pril (s,¢) < p}

lower probability bounds IP;,,(cp) or ]P’>p(<p)

analogous, but minimal probabilities for ¢

216 /378



Treatment of probability operator

upper probability bounds ]P’gp(cp) or ]P’<p(<p)
compute the maximal probabilities for ¢

Proe(s, ¢) = max Pr?{m € Paths(s) : 7 |= ¢}

for all states s

special case ¢ = QW
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Treatment of probability operator

upper probability bounds ng(QO) or ]P’<p(<p)
compute the maximal probabilities for ¢

Proe(s, ¢) = max Pr?{m € Paths(s) : 7 |= ¢}

for all states s

special case ¢ = QW
M

compute Pry,

(s, QW) by solving a linear program

maximal reachability probabilities
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Treatment of probability operator

upper probability bounds ]P’gp(cp) or ]P’<p(<p)
compute the maximal probabilities for ¢

Proe(s, ¢) = max Pr°{r € Paths(s) : 7 |= ¢}

for all states s

special case ¢ = QW
M

compute Pry,

(s, QW) by solving a linear program

general case:
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Treatment of probability operator

upper probability bounds ng(QO) or ]P’<p(<p)
compute the maximal probabilities for ¢

Proe(s, ¢) = max Pr?{m € Paths(s) : 7 |= ¢}

for all states s

special case ¢ = QW
M

compute Pry,

(s, QW) by solving a linear program
general case:

via DRA for ¢ and maximal reachability
probabilities in the product
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Maximal reachability probabilities
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Maximal reachability probabilities

given: MDP M with state space S
set T C S of goal states

task:  compute x; = Pr™M (5,07) = max PrP(s,0T)

max
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Maximal reachability probabilities

given: MDP M with state space S
set T C S of goal states

task:  compute x; = Pr™M (5,07) = max PrP(s,0T)

The vector (xs)ses is the least solution in [0, 1]
of the equation system

xs=1ifse T

xs=max3 > P(s,a,s) - x¢:a € Act(s)} ifsg T
s'eS
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Maximal reachability probabilities

given: MDP M with state space S
set T C S of goal states

task:  compute x; = Pr™M (5,07) = max PrP(s,0T)

The vector (xs)ses is the solution in [0, 1]

of the equation system

xs=1ifse T

xs=max3 > P(s,a,s) - x¢:a € Act(s)} ifsg T
s'eS
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
Xs = max{ > P(s,a,8) - xg 1 € Act(s)} ifsg T
s'eS
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }

Xul == th
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }

Xy, =X, =1
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }
Xy, =X, =1

Xy = Xuy
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }
Xy, =X, =1

Xy, = Xy, =0
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3
XS _ maX{ §Xu1+§xll2, qu3+qu4 }
Xy, =X, =1
Xy, = Xy, =0

Xt2=]-

T = {tl, t2}
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

Xs = max{ %x,,;l—%x,,z, %xu3+%xu4 }
Xy, =X, =1
Xy, = Xy, =0
=1
Xy, = %xm + %xt2
= %x,,4 + % =1

th
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Example: maximal reachability probabilities ...

The vector (xs)ses where xs = Pri¥l (s,0T) is
the least solution in [0,1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

_ 1 2 1 3 3
XS —_ maX{ §Xu1+§xu2, EXU3+EXU4 } - z

Xy, =X, =1

Xyy = Xy =0

=1

Xuy = 3Xu, + 3%,
= %x,,4 —I-% =1

th
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Maximal reachability probabilities

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifse T
xs=maxy >, P(s,a,s) - xg 1 € Act(s)} ifsg T
s'eS

and the |unique| solution in [0, 1] of

xx=1ifse T

xs =0 if T is not reachable from s

Xs = max{ > P(s,a,s") - xs 1 € Act(s)} else

s'eS
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Maximal reachability probabilities

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifse T
Xs = max{ > P(s,a,8) - xg 1 € Act(s)} ifsg T
s'eS

and the |unique| solution in [0, 1] of

x.=1iffseS! <—— graph algorithms
xs=0iffs€S'={s:s 30T}
Xs = max{ > P(s,a,s") - xs 1 € Act(s)} else

s'eS
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Maximal reachability probabilities

PMC-87

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifseT

Xs = max{ > P(s,a,8) - xg 1 € Act(s)} ifsg T
s'eS

and the |unique| solution in [0, 1] of

xs =1iff s € S
xs=0iffs€S={s:s 30T}
xs > Y. P(s,a,s') - xs

s'eS

ifse S’
a € Act(s)
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Maximal reachability probabilities

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifse T
Xs = max{ > P(s,a,8) - xg 1 € Act(s)} ifsg T
s'eS

and the |unique| solution in [0, 1] of

xs=1iffse S§*

xs=0iffs€S={s:s 30T}

x> 3 P(s,e,8)x¢ +P(s,a,SY) ifseS§’

ses! where 3 xg is minimal ¢ € Act(s)
ses?




Maximal reachability probabilities

The vector (xs)ses where xs = Pri¥l (s,0T) is

the solution in [0, 1] of

xs=1ifse T
Xs = max{ > P(s,a,8) - xg 1 € Act(s)} ifsg T
s'eS

and the [unique| solution in [0, 1] of
x.=1iffse §* linear program

xs=0iffs€S'={s:s 30T}

xs> S P(s,0,8) - x¢ +P(s,a,5)< ifs€S?
s'es? a € Act(s)

where ) xg is minimal
seS?




Maximal probabilities for limit properties
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Maximal probabilities for limit properties

given: MDP M = (S,P,...)
prefix-independent limit property E for paths

task:  compute Pr™ (s, E)
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Maximal probabilities for limit properties
given: MDP M = (S,P,...)
prefix-independent limit property E for paths
task:  compute Pr™ (s, E)

]

D :
max Pr {m € Paths(s) : m € E}
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Maximal probabilities for limit properties

given:. MDP M = (S,P,...)
prefix-independent limit property E for paths

task:  compute Pr™ (s, E) /l\
i.e., there exists subsets T7,..., Ty of S s.t.

for all paths 7 in M:
wEE iff Jie{l,...,k}. inf(x)=T;

where inf(sps15...) = {teS:%loiZO. s;=t}
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End component [de Alfaro’96] rer
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End component [de Alfaro’96] rer

Let M = (S, Act, P, AP, L) be an MDP.,

An end component of M is a strongly connected
sub-MDP
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End component [de Alfaro’96] rer

Let M = (S, Act, P, AP, L) be an MDP.,

An end component of M is a strongly connected
sub-MDP, i.e., a pair (T,A) where 3 #A T C S
and A: T — 2% st
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End component [de Alfaro’96] rer

Let M = (S, Act, P, AP, L) be an MDP.,

An end component of M is a strongly connected
sub-MDP, i.e., a pair (T,A) where 3 #A T C S
and A: T — 2% st

(1) enabledness of selected actions

(2) closed under probabilistic branching

(3) the underlying graph is strongly connected
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End component [de Alfaro’96] rer

Let M = (S, Act, P, AP, L) be an MDP.,

An end component of M is a strongly connected
sub-MDP, i.e., a pair (T,A) where 3 #A T C S
and A: T — 2% st

(1) enabledness of selected actions
& # A(t) C Act(t) forallte T
(2) closed under probabilistic branching

(3) the underlying graph is strongly connected
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End component [de Alfaro’96] rer

Let M = (S, Act, P, AP, L) be an MDP.,

An end component of M is a strongly connected
sub-MDP, i.e., a pair (T,A) where 3 #A T C S
and A: T — 2% st

(1) enabledness of selected actions
& # A(t) C Act(t) forallte T
(2) closed under probabilistic branching
Vt € TVa € A(t). (P(t,a,u) >0 — u € T)

(3) the underlying graph is strongly connected
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Example: end components
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Example: end components

end component:
strongly connected sub-MDP
(closed under prob. branching)
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Example: end components

end component:
strongly connected sub-MDP
(closed under prob. branching)
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Limiting behavior of MDPs

For all schedulers D, almost surely an end component
will be reached and all its states visited infinitely often

end component:
strongly connected sub-MDP
(closed under prob. branching)
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Limiting behavior of MDPs

For all schedulers D, almost surely an end component
will be reached and all its states visited infinitely often

T

i.e., for all schedulers D and states s:

D . inf(m) constitutes an } _
Pr { m € Paths(s) : end component =1
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Limiting behavior of MDPs

For all schedulers D, almost surely an end component
will be reached and all its states visited infinitely often

T

i.e., for all schedulers D and states s:

D . inf(m) constitutes an } _
Pr { m € Paths(s) : end component =1

Let E be a limit property and T1,..., T, C S s.t.
wEE iff 3i>0. inf(x)=T;
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Limiting behavior of MDPs

For all schedulers D, almost surely an end component
will be reached and all its states visited infinitely often

T

i.e., for all schedulers D and states s:

D . inf(m) constitutes an } _
Pr { m € Paths(s) : end component =1

Let E be a limit property and T1,..., T, C S s.t.
wEE iff 3i>0. inf(x)=T;
Then: Prmax(s, E) = Prmax(s, O T) where
T = {T; : T; constitutes an end component }
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Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ OO-L; AOQU;.

1<i<k
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Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ OO-L; AOQU;. Then:

1<i<k

Prmax(s, E) = Prmax(s, ¢ accEC)
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Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ OO-L; AOQU;. Then:

1<i<k
Prmax(s, E) = Prmax(s, ¢ accEC)

T

union of all end components T that “meet E”, i.e.,
die{l,....,k}. TNLi=@andTNU;#9
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Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ OO-L; AOQU;. Then:

1<i<k
Prmax(s, E) = Prmax(s, ¢ accMEC)

T

U maximal end components T in M\ L;
i st. TNU; # @
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Quantitative analysis of Rabin conditions

Let E be a Rabin condition \/ OO-L; AOQU;. Then:

1<i<k
Prmax(s, E) = Prmax(s, ¢ accMEC)

T

U maximal end components T in M\ L;
i st. TNU; # @

model checking algorithm for Rabin condition E:

1. compute the maximal end components

2. check which of them fulfills E

3. compute maximal reachability probabilities
(linear program)
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Summary: PCTL* model checking for MDP

PMC-88

given: MDP M = (S, Act, P,...)
PCTL* star formula P<,(¢)

task: compute Sat(P¢,(¢))
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Summary: PCTL* model checking for MDP ...

given:

task:

method:

MDP M = (S, Act, P, ...)
PCTL* star formula P<,(¢)

compute Sat(P<,(¢))

compute x; = Pr™ (s, ¢) via reduction
to the probabilistic reachability problem
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Summary: PCTL* model checking for MDP ...

given:

task:

method:

MDP M = (S, Act, P, ...)
PCTL* star formula P<,(¢)

compute Sat(P<,(¢))

compute x; = Pr™ (s, ¢) via reduction
to the probabilistic reachability problem

T

using DRA A for ¢ and
linear program for M x A
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MDP M

PCTL* path formula ¢
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MDP M

PCTL* path formula ¢

|
LTL formula ¢
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MDP M

PCTL* path formula ¢

|
LTL formula ¢’

:
DRA A
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MDP M PCTL* path formula ¢

|
LTL formula ¢

/

DRA A
product-MDP M x A
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MDP M PCTL* path formula ¢

}
LTL formula ¢’

/

DRA A
product-MDP M x A

Prﬁ’;x(S, 0) = PrMXA((S, in;ts)’V(ﬂQDL; A I:I()U;))

max
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MDP M PCTL* path formula ¢

|
LTL formula ¢’

/

DRA A
product-MDP M x A

Prﬁ’;x(S, 0) = PrMXA((S, in;ts)’V(ﬂQDL; A I:I()U;))

max

initial state in the product, if M starts in s,
i.e., inits = 0(qo, L(s))
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MDP M PCTL* path formula ¢

}

LTL formula ¢’

}

DRA A

/

product-MDP M x A

acceptance
condition

of A

Prﬁ’;x(S, 0) = PrMXA((S, in;ts)’V(ﬂQDL; A I:I()U;))

max

initial state in the product, if M starts in s,
i.e., inits = 0(qo, L(s))
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MDP M PCTL* path formula ¢

}

LTL formula ¢’

}

DRA A

/

product-MDP M x A

acceptance
condition

of A

Prﬁ’;x(S, 0) = PrMXA((S, in;ts)’V(ﬂQDL; A I:I()U;))

max

= Prit<A((s, inits), (gaccEC )

max
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MDP M PCTL* path formula ¢

|
LTL formula ¢’

}
DRA A| acceptance

/ condition
of A

product-MDP M x A

Prﬁ’;x(S, 0) = PrMXA((S, in;ts)’V(ﬂQDL; A I:I()U;))

max

- PrMXA((s, inits), éaccEC )

max

union of all end components C such that
di.CNLi=@and CNU; # 92
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Complexity of PCTL/PCTL* model checking ...
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Complexity of PCTL/PCTL* model checking

PCTL

PCTL*

PMC-94

Markov
chain

Markov
decision
process

274 /378



Complexity of PCTL/PCTL* model checking ...

PCTL | PCTL*
Markov | graph algorithms + linear equation systems
chain ‘
Markov _ _
decision | graph algorithms + linear program

process
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Complexity of PCTL/PCTL* model checking ...

PCTL | PCTL*
Markov graph algorithms + linear equation systems
chain
PTIME PSPACE-complete
[VARDI/WOLPER'86]
Markov _
decision graph algorithms 4+ linear program

process
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Complexity of PCTL/PCTL* model checking ...

PCTL | PCTL*

Markpv graph algorithms + linear equation systems
chain
PTIME PSPACE-complete
[VARDI/WOLPER'86]

Markov _ _
decision graph algorithms 4+ linear program
process

PTIME 2EXP-complete

[COURCOUBETIS/ YANNAKAKIS’88]
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Complexity of PCTL/PCTL* model checking ...

PCTL | PCTL*
Markov graph algorithms + linear equation systems
chain
PTIME PSPACE-complete
[VARDI/WOLPER'86]
Markov

decision graph algorithms 4+ linear program
process

PTIME 2EXP-complete

[COURCOUBETIS/ YANNAKAKIS’88]

tools: e.g., PRISM (Oxford), MRMC (Aachen),
LIQUOR (Dresden), ...
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Tutorial: probabilistic model checking

part 1:

part 2:

Markov chains

probabilistic computation tree logic
(PCTL/PCTL¥)

Markov decision processes (MDP)
PCTL/PCTL* over MDP

partial order reduction

fairness

OVERVIEW-MDP:
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Advanced techniques for PMC

several techniques to combat the
state explosion problem
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Advanced techniques for PMC

e symbolic model checking with variants of BDDs
e.g., in PRISM [Kwiatkowska /Norman /Parker]

e state aggregation with bisimulation
e.g., in MRMC [Katoen et al|

e abstraction-refinement
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter /Zhang]

e partial order reduction
e.g., in LiQuor [Baier/Ciesinski/GroBer]
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Advanced techniques for PMC

e symbolic model checking with variants of BDDs
e.g., in PRISM [Kwiatkowska /Norman /Parker]

e state aggregation with bisimulation
e.g., in MRMC [Katoen et al|

e abstraction-refinement
e.g., in RAPTURE [d'Argenio/Jeannet/Jensen/Larsen]
PASS [Hermanns/Wachter /Zhang]

e |partial order reduction
e.g., in LiQuor [Baier/Ciesinski/GroBer]
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Partial order reduction

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]
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Partial order reduction

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]

e attempts to analyze a sub-system by identifying
“redundant interleavings”

e explores representatives of paths that agree up to
the order of independent actions
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Partial order reduction

technique for reducing the state space of concurrent
systems [Godefroid,Peled,Valmari, ca. 1990]

e attempts to analyze a sub-system by identifying
“redundant interleavings”

e explores representatives of paths that agree up to
the order of independent actions

eg., x:=x+y | z:=2+3

action « action

has the same effect as «; 3 or 3; «
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Partial order reduction

PMC-POR-02

concurrent execution

of processes Py, P
e no communication
e no competition

transition system
for Py|| P, where

P, =a; 3y
Py= X\ pv

286 /378



Partial order reduction

concurrent execution
of processes Py, P
e no communication
e no competition

transition system
for Py|| P, where

P, =a; 3y
Py =\ p;v

PMC-POR-02

idea: explore just 1 path as

representative for all paths
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Peled’s ample-set method
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Peled’s ample-set method

given: transition system 7 = (S, Act, —,...)
task:  generate a sub-system 7, by chosing appropriate
action sets & # ample(s) C Act(s)
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Peled’s ample-set method

given: transition system 7 = (S, Act, —,...)
task:  generate a sub-system 7, by chosing appropriate
action sets & # ample(s) C Act(s) s.t.

For each path 7 in T there exists a path @, in 7,

st. T =g T,
+

stutter-equivalence, i.e.,
their traces agree up to repetition of state-labels
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Peled’s ample-set method

given: transition system 7 = (S, Act, —,...)
task:  generate a sub-system 7, by chosing appropriate
action sets & # ample(s) C Act(s) s.t.

For each path 7 in T there exists a path @, in 7,

st. T =g T,
+

stutter-equivalence, i.e.,
their traces agree up to repetition of state-labels

Hence: T and 7, satisfy the same stutter-invariant
linear-time properties, e.g., LTL\o formulas
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Ample-set method for MDPs

given: transition system 7 = (S, Act, —,...)
task:  generate a sub-system 7, by chosing appropriate
action sets & # ample(s) C Act(s) s.t.

For each path 7 in T there exists a path @, in 7,
st. T =g T,

probabilistic case: generate a sub-MDP M, from M s.t.

M, and M have the same extremal probabilities
for stutter-invariant linear-time properties
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Ample-set method for MDPs exio-oR-06

given: transition system 7 = (S, Act, —,...)
task:  generate a sub-system 7, by chosing appropriate
action sets & # ample(s) C Act(s) s.t.

For each path 7 in T there exists a path @, in 7,
st. T =g T,

probabilistic case: generate a sub-MDP M, from M s.t.

For all schedulers D for M there is a scheduler D, for
M, s.t. for all measurable, stutter-invariant events E:

Pri(E) = Prf,’tr(E)
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Independence of actions
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Independence of non-probabilistic actions

Actions a and 3 are called independent in a
transition system 7 iff:

whenever s - t and s — u then
(1) ais enabled in u
(2) B is enabled int

(3) ifu—v and t 25 wthen v =w
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Independence of non-probabilistic actions

Actions a and 3 are called independent in a
transition system 7 iff:

whenever s - t and s — u then
(1) ais enabled in u
(2) B is enabled int

(3) ifu—v and t 25 wthen v =w
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Independence of actions in an MDP

Let M = (S, Act, P,...) be a MDP and «, 3 € Act.

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):

(1) if P(s,a,t) > 0 then 3 € Act(t)
(2) if P(s,3,u) > 0 then a € Act(u)
(3)
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Independence of actions in an MDP

Let M = (S, Act, P,...) be a MDP and «, 3 € Act.

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):

(1) if P(s,a,t) > 0 then 3 € Act(t)

(2) if P(s,[3,u) > 0 then a € Act(u)

(3) for all states w:

P(s,af,w) = P(s, Ba, w)
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Independence of actions in an MDP

Let M = (S, Act, P,...) be a MDP and «, 3 € Act.

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):

(1) if P(s,a,t) > 0 then 3 € Act(t)
(2) if P(s,[3,u) > 0 then a € Act(u)
(3) for all states w:
P(s,af,w) = P(s, Ba, w)
A K,

/ AN
Y P(s,a,t)- P(t,B,w) > P(s,B,u)- P(u,a,w)

tesS uesS
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Independence of actions in an MDP

a and 3 are independent in M if for each state s
s.t. a, 3 € Act(s):

(1) if P(s,a,t) > 0 then 3 € Act(t)

(2) if P(s,[3,u) > 0 then a € Act(u)

(3) for all states w: P(s,af,w) = P(s, fa, w)

process 2
tosses a coin

process 1
tosses a coin
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Partial order reduction for MDPs

idea: use Peled'’s conditions for the ample sets
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Partial order reduction for MDPs

idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)
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Partial order reduction for MDPs

idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)
(A1) stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions

:

i.e., have no visible effect on the labels of the states
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Partial order reduction for MDPs
idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)
(A1) stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions

(A2) dependency condition:

For each path s —»—5 ... 20, P in Mosit.
3 is dependent on some action in ample(s),
there exists i € {1,..., n} with a; € ample(s)
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Partial order reduction for MDPs
idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)
(A1) stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions

(A2) dependency condition:

For each path s =2 ... 20, P in Mosit.

3 is dependent on some action in ample(s),
there exists i € {1,..., n} with a; € ample(s)

Hence: if a € ample(s) and 3 € Act(s) \ ample(s)
then « and (3 are independent
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Partial order reduction for MDPs

idea:

(A0)
(A1)

(A2)
(A3)

use Peled’s conditions for the ample sets

& # ample(s) C Act(s)

stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions
dependency condition: ...

cycle condition:

for each cycle sos1...5, in M, and each action

a € () Act(s;) we have: a € |J ample(s;)
1<i<n 1<i<n
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Partial order reduction for MDPs

idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions

(A2) dependency condition: ...

(A3) cycle condition:

for each cycle sos1...5, in M, and each action

a € [ Act(s;) we have: € |J ample(s;)
1<i<n 1<i<n

By (A0)-(A3): for all paths w in M there is a
path 7, in M, with T =4 7,

307
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Partial order reduction for MDPs

idea: use Peled'’s conditions for the ample sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition: if ample(s) # Act(s) then all
actions a € ample(s) are stutter actions

(A2) dependency condition: ...

(A3) end component condition:

for each end component T in M, and each action
a € () Act(t) we have: a € |J ample(t)

teT teT

By (A0)-(A3): for almost all paths 7 in M there is a
path 7, in M, with T =4 =,
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Partial order reduction for MDPs

Peled’s conditions (A0)-(A3) are not sufficient
to preserve maximal reachability probabilities
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Partial order reduction for MDPs
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Partial order reduction for MDPs

e « independent from 3 and 7y
e «, 3 and 7y are stutter actions
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Partial order reduction for MDPs

original MDP M reduced MDP M,
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Partial order reduction for MDPs

original MDP M reduced MDP M,
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Partial order reduction for MDPs

original MDP M reduced MDP M,

PrM (s, Ogreen) = 1
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Partial order reduction for MDPs

original MDP M reduced MDP M,

PrM (s,0green) =1 < 3= PrM: (s, Ogreen)
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) if there is a path s =25 ... 20, iy M, s.t.

e ai,...,a, 3¢ ample(s) and
e [ is probabilistic

then |[ample(s)| =1
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) |ample(s)| = 1 or ample(s) = Act(s)
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) |ample(s)| = 1 or ample(s) = Act(s)

If (A0)-(A4) hold then M and M, have the same
extremal probabilities for all LTLyn formulas.
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) |ample(s)| = 1 or ample(s) = Act(s)

If (A0)-(A4) hold then M and M, satisfy the
same CTL\ formulas [Gerth et al, 1995]
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) |ample(s)| = 1 or ample(s) = Act(s)

If (A0)-(A4) hold then M and M, satisfy the
same PCTL, formulas ?
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets

(A0) @ # ample(s) C Act(s)

(A1) stutter condition

(A2) dependency condition

(A3) cycle or end component condition

by the following branching condition

(A4) |ample(s)| = 1 or ample(s) = Act(s)

If (A0)-(A4) hold then M and M, satisfy the
same PCTL, formulas ? no
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(A0)-(A4) not sufficient for PCTL

(A0)-(A4) hold




(A0)-(A4) not sufficient for PCTL S—

(A0)-(A4) hold, but M [~ ® and M, |= ® where
¢=P_, (EI (green — (P=1(Oblue) v IP=1((>red))))
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets
(A0) @ # ample(s) C Act(s)
(A1) stutter condition
(A2) dependency condition
(A3) cycle or end component condition

by the following branching condition

(A4') ample(s) = Act(s) or ample(s) = {a} for
some nonprobabilistic action «
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Partial order reduction for MDPs

extend Peled’s conditions for the ample-sets
(A0) @ # ample(s) C Act(s)
(A1) stutter condition
(A2) dependency condition
(A3) cycle or end component condition

by the following branching condition

(A4') ample(s) = Act(s) or ample(s) = {a} for
some nonprobabilistic action «

If (A0)-(A3) and (A4’) hold then M and M, are
bisimilar and satisfy the same PCTL* formulas
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Implementation of the ample set method ...
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,
e tries to define ample(s) = Act;(s) for some i

Act;(s) = action set of process P; enabled in state s
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,
e tries to define ample(s) = Act;(s) for some i

>

0) @ # ample(s) C Act(s)

stutter condition

>
N

2) dependency condition

>

3) cycle/end component condition

~ A~~~
>

>
=

branching condition
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,
e tries to define ample(s) = Act;(s) for some i

(A0) @ # ample(s) C Act(s) —| local
(A1) stutter condition «—| local
(A2) dependency condition

(A3) cycle/end component condition

(A4) branching condition «—| local
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,
e tries to define ample(s) = Act;(s) for some i

>

3) cycle/end component condition «—| global in M,

(A0) @ # ample(s) C Act(s) —| local

(A1) stutter condition «—| local

(A2) dependency condition «——| global in M
(

(

>
N

branching condition «—1| local
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,

e tries to define ample(s) = Act;(s) for some i
e checks local conditions (A0), (Al) and (A4)
e realizes stronger conditions than (A2) and (A3)

>

4) branching condition «—/ local

(A0) @ # ample(s) C Act(s) «—| local

(A1) stutter condition «—| local

(A2) dependency condition «——| global in M
(A3) cycle/end component condition «—| global in M,
(
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,

e tries to define ample(s) = Act;(s) for some i
e checks local conditions (A0), (Al) and (A4)
e realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

(A3) cycle condition
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,

e tries to define ample(s) = Act;(s) for some i
e checks local conditions (A0), (Al) and (A4)
e realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

(A3) cycle condition

if DFS detects a backward edge t — s
then ample(s) = Act(s)
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Implementation of the ample set method ...

suppose M is an MDP for P4||...||Pa

DFS-based on-the-fly generation of M,

e tries to define ample(s) = Act;(s) for some i
e checks local conditions (A0), (Al) and (A4)
e realizes stronger conditions than (A2) and (A3)

(A2) dependency condition

replace with (A2) with a global dependency condition
on the control flow graphs for Py, ..., Pa

(A3) cycle condition

if DFS detects a backward edge t — s
then ample(s) = Act(s)
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Tutorial: probabilistic model checking

part 1:

part 2:

Markov chains

probabilistic computation tree logic
(PCTL/PCTL¥)

Markov decision processes (MDP)
PCTL/PCTL* over MDP

partial order reduction

MDP with fairness

OVERVIEW-MDP:
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MDP with fairness
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MDP with fairness

e extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by interleaving
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MDP with fairness

e extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by |interleaving

A

verification of liveness properties
(qualitative or quantitative)
often requires fairness assumptions
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MDP with fairness

e extend Markov chains by nondeterminism

e modelling asynchronous distributed systems
by |interleaving

A

verification of liveness properties
(qualitative or quantitative)
often requires fairness assumptions

e.g., strong process fairness:

actions of
— [¢ process P
are taken

process P
0o is enabled

343/378



MDP with fairness

e extend Markov chains by |nondeterminism|

e modelling asynchronous distributed systems
by |interleaving

A

verification of liveness properties
(qualitative or quantitative)
often requires fairness assumptions

general case: fairness assumptions impose restrictions
on the resolution of nondeterminism
to rule out unrealistic behaviors
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MDP with fairness

given: MDP M = (S, Act, P,...)

A fairness assumption F for M is a conjunction of
limit properties of the form:

unconditional fairness OOV
strong fairness OoU — OOV
weak fairness o0U — OOV

where U,V C S
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MDP with fairness

given: MDP M = (S, Act, P,...)

A fairness assumption F for M is a conjunction of
limit properties of the form:

unconditional fairness OOV

strong fairness OoU — OOV
weak fairness o0U — OOV
where U,V C S 0

here: just state-based fairness conditions

action-based fairness conditions can be added, e.g.,

OQenabled(A) — O taken(A) where A C Act
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MDP with fairness

given: MDP M = (S, Act, P,...)

A fairness assumption F for M is a conjunction of
limit properties of the form:

unconditional fairness OOV
strong fairness OoU — OOV
weak fairness o0U — OOV

where U,V C S

Scheduler D for M is called F-fair iff
PrP(s,F) =1 for all reachable states s
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Realizability of fairness assumptions
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Realizability of fairness assumptions

given: MDP M = (S, Act, P,...) and
a fairness assumption F for M

scheduler D is called F-fair iff PrP(s,F)=1
for all statess € S

JF is realizable iff there exists a F-fair scheduler
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Realizability of fairness assumptions

given: MDP M = (S, Act, P,...) and
a fairness assumption F for M

scheduler D is called F-fair iff PrP(s,F)=1
for all statess € S

JF is realizable iff there exists a F-fair scheduler

iff s = 3OFairMEC for alls € S
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Realizability of fairness assumptions

given: MDP M = (S, Act, P,...) and
a fairness assumption F for M

scheduler D is called F-fair iff PrP(s,F)=1
for all statess € S

JF is realizable iff there exists a F-fair scheduler

iff s = 3OFairMEC for alls € S
T

I
union of all maximal end components that contain
a sub-component T where F holds
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Realizability of fairness assumptions

given: MDP M = (S, Act, P,...) and
a fairness assumption F for M

e.g., F=00U —- OOV
scheduler D is called F-fair iff PrP(s,F)=1
for all statess € S

JF is realizable iff there exists a F-fair scheduler

iff s = 3OFairMEC for alls € S
T

I
union of all maximal end components that contain
a sub-component T where F holds, i.e.,

UNT=@orVNT#2
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Realizability of fairness assumptions

given: MDP M = (S, Act, P,...) and
a fairness assumption F for M

e.g., F=00U —- OOV
scheduler D is called F-fair iff PrP(s,F)=1
for all statess € S

JF is realizable iff there exists a F-fair scheduler

iff s = 3OFairMEC for alls € S

poly-time algorithm for computing FairMEC:

. recursive computation of maximal
end components in sub-MDPs
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PCTL* with fairness R

e syntax of state and path formulas as before
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PCTL* with fairness s

e syntax of state and path formulas as before

e semantics as for standard PCTL* over MDP, but:

s =7 Pi(p) iff for all F-fair schedulers D:
PrP(s, o) €1
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PCTL* with fairness s

e syntax of state and path formulas as before

e semantics as for standard PCTL* over MDP, but:

s =7 Pi(p) iff for all F-fair schedulers D:
PrP(s, o) €1

simple cases: e.g., if F is realizable then

s |=r P<p(Ob) iff s |=Pgp(OD)
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PCTL* with fairness s

e syntax of state and path formulas as before

e semantics as for standard PCTL* over MDP, but:

s =7 Pi(p) iff for all F-fair schedulers D:
PrP(s, o) €1

simple cases: e.g., if F is realizable then
s Pep(0B) iff s b= Pey(0D)
but s = P5p(Ob) iff s [~ Psp(Ob) is possible
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PCTL* with fairness s

e syntax of state and path formulas as before

e semantics as for standard PCTL* over MDP, but:

s =7 Pi(p) iff for all F-fair schedulers D:
PrP(s, o) €1

simple cases: e.g., if F is realizable then
s Pep(0B) iff s b= Pey(0D)
but s = P5p(Ob) iff s [~ Psp(Ob) is possible

S |=_7-‘ P>p(<>b) iff
s |= P<i—p(—~bUFairMEC(—b))
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PCTL* model checking for MDP with fairness ...
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PCTL* model checking for MDP with fairness

given:

task:

MDP M = (S, Act, P, AP, L, s)
fairness assumption JF
PCTL* state formula ®

check whether M = ®

PMC-120
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PCTL* model checking for MDP with fairness ...

given: MDP M = (S, Act, P, AP, L, s)
fairness assumption JF
PCTL* state formula ®

task: check whether M |=x ®

main procedure as for standard PCTL*:

recursively compute the satisfaction sets
Satr(W)={s€ S:skr V}

for all sub-state formulas W of ®
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PCTL* model checking for MDP with fairness ...

given: MDP M = (S, Act, P, AP, L, s)
fairness assumption JF
PCTL* state formula ®

task: check whether M |=x ®

main procedure as for standard PCTL*:
recursively compute the satisfaction sets
Satr(W)={s€ S:skr V}

for all sub-state formulas W of ®

treatment of the propositional logic fragment: 4/
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Probabilistic operator under fairness

given:

task:

MDP M = (S, Act, P, ...) with
realizable fairness assumption JF
PCTL* star formula P¢,(p)

compute Satr(P<p(¢))
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Probabilistic operator under fairness

given: MDP M = (S, Act, P, ...) with
realizable fairness assumption JF
PCTL* star formula P¢,(p)

task: compute Sat]:( P<p(p) )

method: compute

xs = max Pr°(s, )
D is fair

via reduction to the probabilistic reachability problem

using DRA A for ¢ and
linear program for M x A
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MDP M with
fairness F

PCTL* path formula ¢
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MDP M with
fairness F

PCTL* path formula ¢

l

LTL formula ¢
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MDP M with
fairness F

PCTL* path formula ¢

l

LTL formula ¢’

}
DRA A
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MDP M with PCTL* path formula ¢

fairness F |

LTL formula ¢’

/

DRA A
product-MDP M x A
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MDP M with PCTL* path formula ¢
fairness F |

LTL formula ¢’

/

DRA A
product-MDP M x A

D _ E _o0 - )
max Pro(s,p) = max Pr=((s, ),Y( O0OL; AOOU;))

D ranges over all E ranges over all
fair schedulers fair schedulers

for Mx A for M x A
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MDP M with PCTL* path formula ¢
fairness F |

LTL formula ¢’

|
DRA A| acceptance

/ condition

of A
product-MDP M x A /

D _ E _o0 - )
max Pro(s,p) = max Pr=((s, ),Y( O0OL; AOOU;))

D ranges over all E ranges over all
fair schedulers fair schedulers

for Mx A for M x A
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MDP M with PCTL* path formula ¢
fairness F |
LTL formula ¢’

|
DRA A| acceptance

/ condition

of A
product-MDP M x A /

D _ E _o0 - )
max Pro(s,p) = max Pr=((s, ) V(=00L; A Oou;))

— E o Fai
= max Pr ((s, ...}, OFairAccEC)
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MDP M with PCTL* path formula ¢
fairness F |
LTL formula ¢’

|
DRA A| acceptance

/ condition

of A
product-MDP M x A /

D _ E _o0 - )
max Pro(s,p) = max Pr=((s, ) V(=00L; A Oou;))

— E o Fai
= max Pr ((s, ...}, OFairAccEC)

union of all maximal end components that contain a fair
sub-component C s.t. i. CNL;=F and CNU; # @

372/378



MDP M with PCTL* path formula ¢
fairness F |
LTL formula ¢’

|
DRA A| acceptance

/ condition

of A
product-MDP M x A /

max Prl(s,o) = max PrE((s, ) V(=00L; A Oou;))

— E o Fai
= max Pr ((s, ...}, OFairAccEC)

= PriXA((s, ...), OFairAccEC)
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Conclusion aenc-cone

e model checking for systems with discrete probabilities
* techniques for verifying non-probabilistic systems
(graph algorithms, automata, ...)

* numerical methods for solving
linear equation systems (Markov chains)
linear programs (MDP)
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Conclusion aenc-cone

e model checking for systems with discrete probabilities
* techniques for verifying non-probabilistic systems
(graph algorithms, automata, ...)

* numerical methods for solving
linear equation systems (Markov chains)
linear programs (MDP)

e to combat the state explosion problem

* symbolic MTBDD-based PRISM [Kwiatk. et al]
* partial order reduction LiQuor [Baier et al|
* abstraction, bisimulation MRMC [Katoen et al|
refinement RAPTURE [d'Argenio et al|
PASS  [Hermanns et al|
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