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Why (timed) games?

to model uncertainty

Example of a processor in the taskgraph example

idle+

(x≤2)

×
(x≤3)

x :=0

add
x :=0

mult

x=2

done

x=3

done

to model an interaction with an environment

Example of the gate in the train/gate example

?
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An example of a timed game

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0

x≤1,c3

x≥2,c4

x≥1,u3

Rule of the game

Aim: avoid / and reach ,

How do we play? According to a
strategy:

f : history 7→ (delay, cont. transition)
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Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

4/14



Decidability of timed games

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC’98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and
EXPTIME-complete. Furthermore memoryless and “region-based”
strategies are sufficient.

; classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

4/14



Decidability of timed games
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Back to the example: computing winning states

ℓ0

(x≤2)

ℓ1

ℓ2

ℓ3

,

/
x≤1,c1

x<1,u1

c2

x<1,u2,x :=0
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Attrac1
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0 1 2 3

ℓ1
0 1 2 3

ℓ2
0 1 2 3

ℓ3
0 1 2 3

Winning states Losing states
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Decidability via attractors

Preda(X ) = {∙ ∣ ∙ a−→ ∙ ∈ X}

controllable and uncontrollable discrete predecessors:

cPred(X ) =
S

a cont.
Preda(X ) uPred(X ) =

S
a uncont.

Preda(X )

time controllable predecessors:

∙ ∙
delay t t.u.

∙

should be safe

Pred�(X ,Safe) = {∙ ∣ ∃t ≥ 0, ∙ �(t)−−→ ∙

and ∀0 ≤ t ′ ≤ t, ∙ �(t′)−−−→ ∙ ∈ Safe}
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Timed games with a reachability objective

We write:
�(X ) = X ∪ Pred�(cPred(X ),¬uPred(¬X ))

The states from which one can ensure , in no more than 1 step is:

Attr1(,) = �(,)

The states from which one can ensure , in no more than 2 steps is:

Attr2(,) = �(Attr1(,))

. . .

The states from which one can ensure , in no more than n steps is:

Attrn(,) = �(Attrn−1(,))

= �n(,)
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Stability w.r.t. regions

if X is a union of regions, then:

Preda(X ) is a union of regions,
and so are cPred(X ) and uPred(X ).

Does � also preserve unions of regions?

Yes!

cPred(X )

uPred(¬X )

Pred�(cPred(X ),¬uPred(¬X ))

(but it does not preserve zones...)

; the computation of �∗(,) terminates!

... and is correct
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Timed games with a safety objective

We can use operator e� defined by

e�(X ) = Pred�(X ∩ cPred(X ),¬uPred(¬X ))

instead of �, and compute e�∗(¬/)

It is also stable w.r.t. regions.
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Some remarks

[AFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga.
[BLMO07] Brihaye, Laroussinie, Markey, Oreiby. Timed Concurrent Game Structures (CONCUR’07).

Control games

Our games are control games,

and in particular they:

are asymmetric

the environment can preempt any decision of the controller
we take the point-of-view of the controller

are neither concurrent nor turn-based

do not take into account Zenoness considerations
; can be done adding a Büchi winning condition

Alternative models [AFH+03,BLMO07]

concurrent and symmetric games

some incorporate non-Zenoness in the winning condition

; those games are not determined /
... and they may not represent a proper interaction with an environment /
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Alternative models [AFH+03,BLMO07]

concurrent and symmetric games

some incorporate non-Zenoness in the winning condition

; those games are not determined /

... and they may not represent a proper interaction with an environment /

10/14



Some remarks

[AFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga.
[BLMO07] Brihaye, Laroussinie, Markey, Oreiby. Timed Concurrent Game Structures (CONCUR’07).

Control games

Our games are control games, and in particular they:

are asymmetric

the environment can preempt any decision of the controller
we take the point-of-view of the controller

are neither concurrent nor turn-based

do not take into account Zenoness considerations
; can be done adding a Büchi winning condition
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Application of timed games to strong timed bisimulation

This is a relation between ∙ and ∙ such that:

a
∀

∃
a

�(d)
∀d > 0

∃
�(d)

... and vice-versa (swap ∙ and ∙) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and
EXPTIME-complete.
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timed automaton A

...

timed automaton ℬ

...

/

...

A and ℬ are strongly timed bisimilar
iff

the prover has a winning strategy to avoid /
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What else?

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR’05).
[BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV’07).

[JRLD07] Jessen, Rasmussen, Larsen, David. Guided Controller Synthesis for Climate Controller Using Uppaal Tiga (FORMATS’07).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier.Automatic Synthesis of Robust and Optimal Controllers – An Industrial Case Study (HSCC’09).
[BDMP03] Bouyer, D’Souza, Madhusudan, Petit. Timed control with partial observability (CAV’03).
[CDL+07] Cassez, David, Larsen, Lime, Raskin. Timed control with observation based and stuttering invariant strategies (ATVA’07).

Implementation: Uppaal-Tiga implements a forward algorithm to
compute winning states and winning strategies [CDF+05,BCD+07]

A climate controller in a pig stable (Skov A/S) [JRLD07]
A pump controller (Hydac Gmbh) [CJL+09]

Partial observation/Incomplete information:

action-based observation: undecidable [BDMP03]
finite-observation of states: decidable [CDL+07]

Quantitative constraints, see the next lecture!
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