Timed games

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

• to model uncertainty

Example of a processor in the taskgraph example

• to model uncertainty

Example of a processor in the taskgraph example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

• to model uncertainty

Example of a processor in the taskgraph example

• to model an interaction with an environment

Example of the gate in the train/gate example

Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

- A (memoryless) winning strategy
 - from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2

• from
$$(\ell_2,\star)$$
, play $(1-\star,c_2)$

Rule of the game

- Aim: avoid 🙁 and reach 🙂
- How do we play? According to a strategy:

f: history \mapsto (delay, cont. transition)

A (memoryless) winning strategy

- from $(\ell_0, 0)$, play $(0.5, c_1)$ \sim can be preempted by u_2
- from (ℓ_2,\star), play (1 \star,c_2)
- from ($\ell_3, 1$), play (0, c_3)
- from ($\ell_1, 1$), play (1, c_4)

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \rightsquigarrow classical regions are sufficient for solving such problems

Decidability of timed games

Theorem [AMPS98,HK99]

Reachability and safety timed games are decidable and EXPTIME-complete. Furthermore memoryless and "region-based" strategies are sufficient.

 \rightsquigarrow classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (*HSCC'99*). [BHPR07] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (*ICALP'07*). [JT07] Jurdziński, Trivedi. Reachability-time games on timed automata (*ICALP'07*).

•
$$\operatorname{Pred}^{a}(X) = \{ \bullet \mid \bullet \xrightarrow{a} \bullet \in X \}$$

•
$$\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$$

• controllable and uncontrollable discrete predecessors:

 $\mathsf{cPred}(X) = \bigcup_{a \text{ cont.}} \mathsf{Pred}^{a}(X) \qquad \qquad \mathsf{uPred}(X) = \bigcup_{a \text{ uncont.}} \mathsf{Pred}^{a}(X)$

• $\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$

• controllable and uncontrollable discrete predecessors:

•
$$\mathsf{Pred}^{\mathsf{a}}(\mathsf{X}) = \{\bullet \mid \bullet \xrightarrow{\mathsf{a}} \bullet \in \mathsf{X}\}$$

• controllable and uncontrollable discrete predecessors:

and
$$\forall 0 \leq t' \leq t, \bullet \xrightarrow{\delta(t')} \bullet \in \mathsf{Safe} \}$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

 $\operatorname{Attr}_1(\bigcirc) = \pi(\bigcirc)$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure 🙂 in no more than 2 steps is:

$$\mathsf{Attr}_2(\bigcirc) = \pi(\mathsf{Attr}_1(\bigcirc))$$
Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure (2) in no more than 2 steps is: $Attr_2((2)) = \pi(Attr_1((2)))$

• . . .

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure in no more than 2 steps is: Attr₂($\textcircled{}) = \pi(Attr_1(\textcircled{}))$

• . . .

• The states from which one can ensure \bigcirc in no more than *n* steps is:

$$\operatorname{Attr}_n(\bigcirc) = \pi(\operatorname{Attr}_{n-1}(\bigcirc))$$

Timed games with a reachability objective

We write:

$$\pi(X) = X \cup \mathsf{Pred}_{\delta}(\mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$$

• The states from which one can ensure 🙂 in no more than 1 step is:

$$\mathsf{Attr}_1(\bigcirc) = \pi(\bigcirc)$$

• The states from which one can ensure in no more than 2 steps is: Attr₂($\textcircled{}) = \pi(\text{Attr}_1(\textcircled{}))$

• . . .

• The states from which one can ensure \bigcirc in no more than *n* steps is:

$$\operatorname{Attr}_{n}(\textcircled{O}) = \pi(\operatorname{Attr}_{n-1}(\textcircled{O})) \\ = \pi^{n}(\textcircled{O})$$

- if X is a union of regions, then:
 - $\operatorname{Pred}_{a}(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions?

cPred(X) $uPred(\neg X)$ $Pred_{\delta}(cPred(X), \neg uPred(\neg X))$

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

cPred(X)uPred($\neg X$) Pred_{δ}(cPred(X), \neg uPred($\neg X$))

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

 \rightsquigarrow the computation of $\pi^*(\bigcirc)$ terminates!

- if X is a union of regions, then:
 - $Pred_a(X)$ is a union of regions,
 - and so are cPred(X) and uPred(X).
- Does π also preserve unions of regions? Yes!

 \rightsquigarrow the computation of $\pi^*(\textcircled{o})$ terminates! ... and is correct

Timed games with a safety objective

 $\bullet\,$ We can use operator $\widetilde{\pi}$ defined by

 $\widetilde{\pi}(X) = \mathsf{Pred}_{\delta}(X \cap \mathsf{cPred}(X), \neg \mathsf{uPred}(\neg X))$

instead of π , and compute $\tilde{\pi}^*(\neg \textcircled{2})$

Timed games with a safety objective

• We can use operator $\widetilde{\pi}$ defined by

 $\widetilde{\pi}(X) = \operatorname{Pred}_{\delta}(X \cap \operatorname{cPred}(X), \neg \operatorname{uPred}(\neg X))$

instead of π , and compute $\tilde{\pi}^*(\neg \textcircled{2})$

• It is also stable w.r.t. regions.

Control games

Our games are control games,

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

 \rightsquigarrow can be done adding a Büchi winning condition

Alternative models [AFH+03,BLMO07]

- concurrent and symmetric games
- some incorporate non-Zenoness in the winning condition

[AFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga.

[BLMO07] Brihaye, Laroussinie, Markey, Oreiby. Timed Concurrent Game Structures (CONCUR'07).

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

 \rightsquigarrow can be done adding a Büchi winning condition

Alternative models [AFH+03,BLMO07]

- concurrent and symmetric games
- some incorporate non-Zenoness in the winning condition

 \rightsquigarrow those games are not determined $\ensuremath{\mathfrak{S}}$

[AFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga.

[BLMO07] Brihaye, Laroussinie, Markey, Oreiby. Timed Concurrent Game Structures (CONCUR'07).

Control games

Our games are control games, and in particular they:

- are asymmetric
 - the environment can preempt any decision of the controller
 - we take the point-of-view of the controller
- are neither concurrent nor turn-based
- do not take into account Zenoness considerations

 \rightsquigarrow can be done adding a Büchi winning condition

Alternative models [AFH+03,BLMO07]

- concurrent and symmetric games
- some incorporate non-Zenoness in the winning condition

 \rightsquigarrow those games are not determined $\ensuremath{\mathfrak{S}}$

 \ldots and they may not represent a proper interaction with an environment \otimes

[AFH+03] de Alfaro, Faella, Henzinger, Majumdar, Stoelinga.

[BLM007] Brihaye, Laroussinie, Markey, Oreiby. Timed Concurrent Game Structures (CONCUR'07).

This is a relation between ${\mbox{ \bullet}}$ and ${\mbox{ \bullet}}$ such that:

This is a relation between • and • such that:

... and vice-versa (swap • and •) for the bisimulation relation.

This is a relation between ${\mbox{ \bullet}}$ and ${\mbox{ \bullet}}$ such that:

... and vice-versa (swap \bullet and \bullet) for the bisimulation relation.

Theorem

Strong timed (bi)simulation between timed automata is decidable and EXPTIME-complete.

What else?

 Implementation: Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07).
- Implementation: Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]
 - A climate controller in a pig stable (Skov A/S) [JRLD07]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07). [JRLD07] Jessen, Rasmussen, Larsen, David. Guided Controller Synthesis for Climate Controller Using Uppaal Tiga (FORMATS'07).

 Implementation: Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]

- A climate controller in a pig stable (Skov A/S) [JRLD07]
- A pump controller (Hydac Gmbh) [CJL+09]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05).
[BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games1 (CAV'07).
[JRLD07] Jessen, Rasmussen, Larsen, David. Guided Controller Synthesis for Climate Controller Using Uppaal Tiga (FORMATS'07).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier.Automatic Synthesis of Robust and Optimal Controllers – An Industrial Case Study (HSCC'09).

- Implementation: Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]
 - A climate controller in a pig stable (Skov A/S) [JRLD07]
 - A pump controller (Hydac Gmbh) [CJL+09]
- Partial observation/Incomplete information:
 - action-based observation: undecidable [BDMP03]
 - finite-observation of states: decidable [CDL+07]

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07). [JRLD07] Jessen, Rasmussen, Larsen, David. Guided Controller Synthesis for Climate Controller Using Uppaal Tiga (FORMATS'07). [CIL+09] Cassez, Jessen, Larsen, Raskin, Reynier.Automatic Synthesis of Robust and Optimal Controllers – An Industrial Case Study (HSCC'09). [BDMP03] Bouyer, D'Souza, Madhusudan, Petit. Timed control with observation based and stuttering invariant strategies (ATVA'07).

- Implementation: Uppaal-Tiga implements a forward algorithm to compute winning states and winning strategies [CDF+05,BCD+07]
 - A climate controller in a pig stable (Skov A/S) [JRLD07]
 - A pump controller (Hydac Gmbh) [CJL+09]
- Partial observation/Incomplete information:
 - action-based observation: undecidable [BDMP03]
 - finite-observation of states: decidable [CDL+07]
- Quantitative constraints, see the next lecture!

[CDF+05] Cassez, David, Fleury, Larsen, Lime. Efficient on-the-fly algorithms for the analysis of timed games (CONCUR'05). [BCD+07] Berhmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07). [JRLD07] Jessen, Rasmussen, Larsen, David. Guided Controller Synthesis for Climate Controller Using Uppaal Tiga (FORMATS'07). [CIL+09] Cassez, Jessen, Larsen, Raskin, Reynier.Automatic Synthesis of Robust and Optimal Controllers – An Industrial Case Study (HSCC'09). [BDMP03] Bouyer, D'Souza, Madhusudan, Petit. Timed control with observation based and stuttering invariant strategies (ATVA'07).