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Hybrid (griech.) bedeutet iiberheblich, hochmiitig, vermessen.

Hybrid (from Greece) means arrogant, presumptuous.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984



What is a hybrid system?

Hybrid (griech.) bedeutet iiberheblich, hochmiitig, vermessen.
Weitere Inhalte [insbes. im wiss. Sprachgebrauch] sind spater
hinein interpretiert worden.

Hybrid (from Greece) means arrogant, presumptuous.
Other interpretations [in particular, in scientific jargon] have been

added later.

After H. Menge: Griechisch/Deutsch, Langenscheidt 1984
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= when you try to verify hybrid systems,
be prepared that they may act like a prima donna!
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Hybrid systems

are ensembles of interacting discrete and continuous subsystems:
® Technical systems:

physical plant + multi-modal control

physical plant + embedded digital system

mixed-signal circuits

multi-objective scheduling problems (computers / distrib. energy
management / traffic management / ...)

® Biological systems:

Delta-Notch signaling in cell differentiation
Blood clotting

O aoa
® Economy:
e cash/good flows + decisions

® Medicine/health/epidemiology:

infectious diseases + vaccination strategies
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Formal Model: Hybrid Automata
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: vertical position of the ball

: velocity
y >0 ballis moving up
y <0 ball is moving down
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State and Dimension Explosion

Number of continuous variables linear in number
of cars

® Positions, speeds, accelerations,

® torque, slip, ...
Number of discrete states exponential in number
of cars

® Operational modes, control modes,

® state of communication subsystem, ...
Size-dependent dynamics

® Latency in ctrl. loop depends on number of

cars due to communication subsystem.

® Coupled dynamics yields long hidden
channels chaining signal transducers.
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State and Dimension Explosion

Number of continuous variables linear in number
of cars

® Positions, speeds, accelerations,

® torque, slip, ...
Number of discrete states exponential in number
of cars

® Operational modes, control modes,

® state of communication subsystem, ...
Size-dependent dynamics

® Latency in ctrl. loop depends on number of

cars due to communication subsystem.

® Coupled dynamics yields long hidden
channels chaining signal transducers.

= Need a scalable approach
= Let's try to achieve this through strictly symbolic methods.
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Industrial Modelling Paradigms by Example

Train Separation in ETCS Level 3

" M. Franzle (Univ. of Oldenburg) | Automated Analysis of Hybrid Systems QMC School 2010 7/ 75



ETCS Movement Authorization

Example: Train Separation in Absolute Braking Distance

Mg

=== | | ==

dhed el

Minimal admissible distance d between two successive trains equals

braking distance dj, of the second train plus a safety distance S.

First train reports position of its tail to the second train every 8 seconds.
Controller in second train automatically initiates braking to maintain a safe distance.

Automated Analysis of Hybrid Systems QMC School 2010



Analysis of Matlab/Simulink Model

Model of Controller & Train Dynamics

Property to be checked: Does the controller guarantee
that collisions are averted in any possible scenario of use?

Automated Analysis of Hybrid Systems QMC School 2010 9 /75



0 2 0
® With vipax = 83.42 and a,, = —0.732, due to s = %"?, automatic
braking should commence at distance

m\ 2
(83.42)

— 4968 m
—0.73

1
Son = 5



Worst-Case Analysis:
Running at top speed...

® With vy = 83.4% and a,, = —0.733, due to s = %Vf; automatic
braking should commence at distance
2
1(83.42)
=_-——52 — 4068
R "

® In the worst case, initiating braking 8s late, we may have travelled
8s-83.47 = 667m beyond that horizon, thus commencing
deceleration at

Sonjact = —4968m + 667 m = —4301m
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Worst-Case Analysis:
Running at top speed...

® With vy = 83.4% and a,, = —0.733, due to s = %Vf; automatic
braking should commence at distance
2
1(83.42)
=_-——52 — 4068
R "

® In the worst case, initiating braking 8s late, we may have travelled
8s-83.47 = 667m beyond that horizon, thus commencing
deceleration at

Sonjact = —4968m + 667 m = —4301m

® Due to a = %"—52 the corresponding deceleration is
p)
1 (83.42) m m
Ayt = ———>2 = —0.8— e N
At = 5 4301 m s2 > g2
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Simulation of the Model




Analysis of Matlab/Simulink Model

Simulation of the Model Error Trace found by HySAT / iSAT
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o |
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Time offset: 0 69968 decisions

27047 conflicts

~ 5e8 assignments

~ 20 minutes
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SAT Modulo Theory

An engine for
bounded model checking of
linear hybrid automata
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Bounded Model Checking (BMC)

Method:

® construct formula that is satisfiable iff error trace of length k exists

e formula is a k—fold unwinding of the system’s transition relation,
concatenated with a characterization of the initial state(s) and the
(unsafe) state to be reached

® use appropriate decision procedure to decide satisfiability of the
formula

e usually BMC is carried out incrementally for k = 0,1,2,... until an
error trace is found or tired
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Bounded Model Checking (BMC) algorithm

® For given i € N check for satisfiability of
_ ( init(xp) A trans(xg, x1) /\ ... A\ trans(x,-l,x,-)>
= ¢x) A... A d(x) '
If test succeeds then report violation of goal.

® Otherwise repeat with larger /.
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Linear Hybrid Automata (LHA)

Discrete Control Mode
Flow Condition

Invariant
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Linear Hybrid Automata (LHA)

Jump
Precondition
Postcondition
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Linear Hybrid Automata (LHA)
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of Linear Hybrid Automata

Initial state:

o) A =03 A x°=0.0
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BMC of Linear Hybrid Automata

Initial state:

o) A =03 A x°=0.0

Jumps:

ol ANoht = (X' >12) A (x* =05-x) A tT=0
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BMC of Linear Hybrid Automata

Initial state:

o) A =03 A x°=0.0

Jumps:

ol Aot = (X' >12) A (X =05-x) At =0

Flows:
6 o (x'+21) < X" < (X' +3¢)
g Aot = A (X< 12)
A (t'>0)
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BMC of Linear Hybrid Automata

Initial state:

o) A =03 A x°=0.0

Jumps:

ol Aot = (X' >12) A (X =05-x) At =0

Flows:

(x'+2¢t) < x*1 < (x' +3¢)
(X/'+1 < 12)

(t'>0)

i i+1
oy /\Noy —

> >

Quantifier—free Boolean combinations of linear arithmetic
constraints over the reals
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BMC of Linear Hybrid Automata

Initial state:

o) A =03 A x°=0.0

Jumps:

ol Aot = (X' >12) A (X =05-x) At =0

Flows:

(x'+2¢t) < x*1 < (x' +3¢)
(X/'+1 < 12)

(t'>0)

i i+1
oy /\Noy —

> >

Quantifier—free Boolean combinations of linear arithmetic
constraints over the reals

Parallel composition corresponds to conjunction of formulae
— No need to build product automaton
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Ingredients of a Solver for BMC of LHA

BMC of LHA yields very large boolean combination of linear arithmetic
facts.

Davis Putnam based SAT-Solver:

@ tackle instances with > 10.000 variables
@ efficient handling of disjunctions
@ Boolean variables only

Linear Programming Solver:

@ solves large conjunctions of linear arithmetic inequations
@ efficient handling of continuous variables (> 10°)
@ no disjunctions

Idea: Combine both methods to overcome shortcomings.

~> SAT modulo theory
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(Old-fashioned) DPLL Procedure

(xVyVz)
A (xVy)

A (yVz)

A (xVyVz)

N (xVyVz)
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(Old-fashioned) DPLL Procedure

X
Decide
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(Old-fashioned) DPLL Procedure

xVyVz)

Decide
A (xVy)

N (yVz) ) Deduce

A (xVyVz)

A (xVyVz)
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(Old-fashioned) DPLL Procedure

VyV
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N (xVyVz)
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(Old-fashioned) DPLL Procedure

VyV
VyVa) Decide

A (xVy)

N (yVz) ) Deduce
N (xVyVz)

o Decide
N (xVyV z)
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(Old-fashioned) DPLL Procedure

VyVz) Decide
AN (xVy)
A (yV 2z) ) Deduce
N (xVyVz)
Decide

A (xVyVz)

Deduce
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(Old-fashioned) DPLL Procedure

VyV
(xVyVa2) Decide

A (xVy)

N (yVz) Deduce
AN (xVyVz)

Decid
A xVyVZ) eciae

Deduce
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(Old-fashioned) DPLL Procedure

VyV
VyVa) Decide

A (xVy)

N (yVz) ) Deduce
N (xVyVz)

. Decide
AN (xVyVz)

Deduce
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming
Input formula:

®=(e— CAD)
A (f—=AAB
A FVgVe)
A grv?)
A(e—= (CVD)Ag)
(A— (4x—2y >9))
(B— (2x—4y < —T))
(
(D

C—o(x+y<5)
— (x <))

DPLL search
® traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
® querying external solver to determine consistency of arithm. constr. syst.

Automated Analysis of Hybrid Systems QMC School 2010 19 / 75
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

C+D>2
2f +A+B>2
frg>1

g+f>1

DPLL search
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming
D
A
Conflict !

Deduce C, D

Deduce A, B
Irreducible infeasible subsystemis  {A, B, C}

Learned conflict clause: A+ B +C > 1

DPLL search
® traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
® querying external solver to determine consistency of arithm. constr. syst.
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(Simplified) SAT Modulo Theory Scheme: LinSAT

Davis Putnam Linear Programming

D
A

Deduce g, f, A B
Deduce C, D Deduce C from conflict cl
Deduce D

Deduce A, B Deduce g, g

Learned conflict clause: A+ B+ C >1

DPLL search

® traversing possible truth-value assignments of Boolean part
© incrementally (de-)constructing a conjunctive arithmetic constraint system
® querying external solver to determine consistency of arithm. constr. syst.
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Deciding the conjunctive T-problems

For T being linear arithmetic over R, this can be done by linear
programming:

A mA,X<b iff Ax<b
JXi

i=1 j=1

~ Solving LP maximize c¢’x
subject to Ax <b

with arbitrary ¢ provides consistency information.
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Deciding the conjunctive T-problems (cntd.)

To cope with systems C containing strict inequations 3 7 A; ;x;j<b;, one
classically: introduces a slack variable ¢,
e then replaces 3 7, A;jxj<b; by 3 T Ajxi+e <bj,
® solves the resultant LP L, maximizing the objective
function ¢

~+ C is satisfiable iff L is satisfiable with optimum solution
> 0.
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Deciding the conjunctive T-problems (cntd.)

To cope with systems C containing strict inequations 3 7 A; ;x;j<b;, one
classically: introduces a slack variable ¢,
e then replaces 3 7, A;jxj<b; by 3 T Ajxi+e <bj,
® solves the resultant LP L, maximizing the objective
function ¢

~+ C is satisfiable iff L is satisfiable with optimum solution
> 0.
more elegantly: treat ¢ symbolically:

® use 1 and ¢ as fundamental units of the number system,
o represent all numbers and coefficients in inequations as
linear combinations of 1 and ¢

[Dutertre, de Moura 2006: Yices]
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Extracting reasons for T-conflicts

Goal: In case that the original constraint system

k n
C — /\;',:1 er',zl Ajjx; < b,
N Nk 2 jo1 Aiyxj < bj

is infeasible, we want a subset / C {1,..., n} such that
® the subsystem C|; of the constraint system containing
only the conjuncts from [ also is infeasible,
® vyet the subsystem is irreducible in the sense that any
proper subset J of | designates a feasible system C|;.
Such an irreducible infeasible subsystem (11S) is a prime
implicant of all the possible reasons for failure of the
constraint system C.
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Extensions & Optimizations

DPLL(T): If the T solver can itself do fwd. inference, it cannot only
prune the search tree through conflict detection, but also
through constraint propagation:

® SAT solver assigns truth values to subset C C A of the
set A of constraints occurring in the input formula,

® T solver finds them to be consistent and to imply a truth
value assignment to further T constraints D C A\ C,

® these truth-value assignments are performed in the SAT
solver store before resuming SAT solving.

_ Automated Analysis of Hybrid Systems QMC School 2010 23 /75



SAT modulo theory for LinSAT

® SAT modulo theory solvers reasoning over linear arithmetic as a theory are
readily available: E.g.,
e LPSAT [Wolfman & Weld, 1999]
e |CS [Filliatre, Owre, RueB, Shankar 2001], Simplics [de Moura,
Dutertre 2005], Yices [Dutertre, de Moura 2006]
e MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani,
Bozzano, Juntilla, van Rossum, Schulz 2002-]
e CVC [Stump, Barrett, Dill 2002], CVC Lite [Barrett, Berezin 2004],
CVC3 [Barrett, Fuchs, Ge, Hagen, Jovanovic 2006]
e HySAT | [Herde & Frinzle, 2004]
e Z3 [Bjgrner, de Moura, 2006-]
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SAT modulo theory for LinSAT

® SAT modulo theory solvers reasoning over linear arithmetic as a theory are
readily available: E.g.,

e LPSAT [Wolfman & Weld, 1999]

e |CS [Filliatre, Owre, RueB, Shankar 2001], Simplics [de Moura,
Dutertre 2005], Yices [Dutertre, de Moura 2006]

e MathSAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani,
Bozzano, Juntilla, van Rossum, Schulz 2002-]

e CVC [Stump, Barrett, Dill 2002], CVC Lite [Barrett, Berezin 2004],
CVC3 [Barrett, Fuchs, Ge, Hagen, Jovanovic 2006]

e HySAT | [Herde & Frinzle, 2004]

e Z3 [Bjgrner, de Moura, 2006-]

L]

® Their use for analyzing linear hybrid automata has been advocated a number
of times (e.g. in [Audemard, Bozzano, Cimatti, Sebastiani 2004]).

® They combine symbolic handling of discrete state components (via SAT
solving) with symbolic handling of continuous state components.
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Hybrid BMC in Practice

ETCS Train separation in HySAT ||
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Switch block: Passes through the first input or the third input
- based on the value of the second input.

brake -> a
!brake -> a

a_brake;
a_free;
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Euler approximation of integrator block

Xr’ = xr + dt * v;
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Euler approximation of integrator block

Xr’ = xr + dt * v;

...could also be higher-order Taylor approximation with safe remainder.
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Reduction of Matlab/Simulink to Constraints

Translation to HySAT

- Relay block: When the relay is on, it remains on until the input
- drops below the value of the switch off point parameter. When the
- relay is off, it remains off until the input exceeds the value of
- the switch on point parameter.

(!is_on and h >= param_on ) -> ( is_on’ and brake);
(lis_on and h < param_on ) -> (!is_on’ and !brake);
( is_on and h <= param_off) -> (!is_on’ and !brake);
( is_on and h > param_off) -> ( is_in’ and brake);
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Reduction of Matlab/Simulink to Constraints

N

® The model contains non-linearities due to a = %—

|4
S
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Reduction of Matlab/Simulink to Constraints

N

® The model contains non-linearities due to a = %—

|4
S

® Thus not expressible in LinSAT
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Reduction of Matlab/Simulink to Constraints

N

® The model contains non-linearities due to a = %V?

® Thus not expressible in LinSAT

= Need a more comprehensive solving technology than DPLL(LP),
able to deal with non-linear constraints
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Bounded Model Checking of Nonlinear
Discrete-Time Hybrid Systems (1)

Given:
Nonlinear discrete-time hybrid
dynamical system
X — state vector
Xni1 = F(Xn, in) i — input vector
on =g(Xnin) o — output vector
f  — next-state function
g — output function
f, g potentially nonlinear.
Goal:

Check whether some unsafe state is reachable within k steps of the system
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Bounded Model Checking of Nonlinear
Discrete-Time Hybrid Systems (2)

Method:
® Construct formula that is satisfiable if error trace of length k exists

® Formula is a k—fold unrolling of the transition relation, concatenated with a
characterization of the initial state(s) and the (unsafe) state to be reached

x1 = f(xo, o)
00 = g(xo, i)

® Use appropriate procedure to “decide” satisfiability of the formula
Needed:
Solvers for large, non-linear arithmetic formulae with a rich Boolean structure
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Bounded Model Checking with HySAT / iSAT

Safety property: SOLUTION:
There's no sequence of ° %’00;01&),' 0l
e1: [1, 1]
02: [1, 1]
3.14 < x < 3.15 e3: [0, 0]
e4: [1, 1]
05: [1, 1]
@6: [0, 0]
e7: [1, 1]
©8: [0, 0]
09: [1, 1]
010: [1, 1]
Bl s o11: [0, 0]
float [0.0, 1000.0] x;

input values such that

x (float):
. L @: [2, 2]
- Characterization of initial state. 01: [1.25992, 1.25992]
x =2.0; ©2: [2.5874, 2.5874]
03: [7.69464, 7.69464]
04: [1.97422, 1.97422]
@5: [4.89756, 4.89756]
06: [24.9861, 24.9861]
Q@7: [2.92347, 2.92347]
©8: [9.5467, 9.5467]
- State(s) to be reached. ©9: [2.12138, 2.12138]
x >= 3.14 and x <= 3.15; 010: [5.50024, 5.50024]
@11: [31.2526, 31.2526]
012: [3.14989, 3.14989]

- Transition relation.
b ->x =x™2 + 1;
b -> x’ = nrt(x, 3);
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Satisfiability solving in
undecidable arithmetic domains

ISAT algorithm
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Classical Lazy TP Layout

arithmetic
constraint system

DPLL-SAT

Arithmetic

consistent:
+ conflict-driven learning - yes / no reasoner
+ non—chronol. backtrack.

ExEIa-na-tio-n:- T

(minimal) infeasible

subsystem
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Classical Lazy TP Layout

arithmetic
constraint system

DPLL-SAT

Arithmetic

consistent:
+ conflict-driven learning - yes / no reasoner
+ non—chronol. backtrack.

ExEIa-na-tio-n:- T

(minimal) infeasible

subsystem

Problems with extending it to richer arithmetic domains:

o undecidability: answer of arithmetic reasoner no longer two-valued;
don't know cases arise

® explanations: how to generate (nearly) minimal infeasible subsystems
of undecidable constraint systems?
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Find satisfying assignments (or prove absence thereof) for large (thousands
of Boolean connectives) formulae of shape

(b = x12—cosy1 <2y +sinz + e't)
(xs =tanys Vtany, > z3 V ...)

>> > >

(% =—sinxA\x3 >5Ax3<7T/Axqg>12/\...)



The Task

Find satisfying assignments (or prove absence thereof) for large (thousands
of Boolean connectives) formulae of shape

(by = x? —cosy; < 2y +sinz + 1)
N (xs=tanyzVtany, >z V...)
VA
N (& =—sinxAx3>5Ax3<TAxs>12A...)
AN

Conventional solvers
® do either address much smaller fragments of arithmetic
e decidable theories: no transcendental fct.s, no ODEs
e or tackle only small formulae
e some dozens of Boolean connectives.
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Algorithmic basis:

Interval constraint propagation
(Hull consistency version)
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® Complex constraints are rewritten to “triplets” (primitive constraints):

@ 3 hléx/\Z
X*+y<6 ~ i A hEh+y
N hy <6



Interval Constraint Propagation (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

€l o hléx/\Z
X°+y<6 ~ o: A ho=h +y
AN hy <6

® “Forward" interval propagation yields justification for constraint satisfaction:

/72§6i8

satisfied in box
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Interval Constraint Propagation (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

€l o hléx/\Z
X°+y<6 ~ o: A ho=h +y
AN hy <6

® Interval propagation (fwd & bwd) yields witness for unsatisfiability:

B4 . unsat. in box
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Interval Constraint Propagation (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

€l o hléx/\2
X°+y<6 ~ o: A ho=h +y
AN hy <6

® Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

x € [-10,10]
A y € [-10,10]
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Interval Constraint Propagation (1)

® Complex constraints are rewritten to “triplets” (primitive constraints):

€l o hléx/\Z
X°+y<6 ~ o: A ho=h +y
AN hy <6

® Interval prop. (fwd & bwd until fixpoint is reached) yields contraction of box:

Constraint is not satisfied

by the contracted box!

x € [—4,4]
N y € [-10,6]
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x € [~100,100]
x € [-10,10]

y € [-100,100]
y € [0,100]

Automated Analysis of Hybrid Systems QMC School 2010



Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction system:

—

0, 00}

Cy — —  he(0,00) #> h>5

>35> X
v oIbm

o1 X

A
A



Interval contraction

Backward propagation yields rectangular overapproximation of
non-rectangular pre-images.

Thus, interval contraction provides a highly incomplete deduction system:

[0, 00)
Xy

x € (0,00)
— A yE(0,00) — hE(0,00J ?—%> h>5

>35> X
v o Ibm

A
A

~ enhance through branch-and-prune approach.
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How HySAT works

c:

C

c3:

c

Cs:

Ce:

cr:

cg:

(Fa VvV —cVd) o Use Tseitin-style (i.e. definitional) transformation to
A (=a V —b V ¢ rewrite input formula into a conjunction of constraints:
A (=c V. —d) > n-ary disjunctions of bounds

> arithmetic constraints having at most one operation symbol
A bV x>-2)

ANx>4V y<0V h3>6.2)
e Boolean variables are regarded as 0-1 integer variables.

A h=x? Allows identification of literals with bounds on Booleans:
N h=—2-y b=b>1
A hy = hy+ hy ~b=b<0

e Float variables hy, hy, h3 are used for decomposition
of complex constraint x*> — 2y > 6.2.
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How HySAT works

a: (—a V —c V d)
o: A (-aV —bV )
c: A (—c V —d)

a: N (bV x>-2)

: A (x>4V y<0V h3>6.2)

6: A h=x?
g N hh==2-y

cg: /N h3=h+h
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How HySAT works

c:

C

c3:

c

Cs:

Ce:

cr:

cg:

(ma V —c V d)
A (maV =bV c)
A (—c V —d)

A (bV x>=2)

ANx>4V y<0V h3>6.2)

A h =x?
N h=-2y
N h3=hi+ hy

DL 1:

L2 (b>1 ]_w»( c>1
(/]
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How HySAT works

c:

C

c3:

c

Cs:

Ce:

cr:

cg:

C:

(ma V —c V d)
A (maV =bV c)
A (—c V —d)

A (bV x>=2)

ANx>4V y<0V h3>6.2)

A h =x?

N h=-2y
A h3=hi+ hy
A (—a V —c)

DL 1:
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How HySAT works

a:  (7aV=oeVd) pLi: (ax1 y5e( c<0 yGa( b<0 Jim
e e 54

o: A (-aV —bV )
c: A (—c V —d)
a: N (bV x>-2)

: A (x>4V y<0V h3>6.2)

6: A h=x?
g N hh==2-y

cg: /N h3=h+h

c: A (—aV —c)
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How HySAT works

a: | (7aVine Vid) pL1: (a>1 Ji( c<0 Jiw( b<0 yie(x>-2)
[} [ [

o: A (-aV —bV )

a: A (—cV —d) DL 2: y>4

cr
a: N (bV x>-2)

: A (x>4V y<0V h3>6.2)

6: A h=x?
g N hh==2-y

cg: A\ h3=h+hy

c: A (—aV —c)
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How HySAT works

a: (raVoeVd) pLi: (ax1 foe( c<0 fga( b<0 yiw(x>2)
[} [ [

o: A (-aV —bV )
a: A (7cV —d) o

a: AV x>-2) ' 5
: A (x>4V y<0V h3>6.2)

6: A h=x?

g N hh==2-y

cg: /N h3=h+h

c: A (—aV —c)
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How HySAT works

c:

C

c3:

c

Cs:

Ce:

cr:

cg:

C:

C10 -

(ma V —c V d)
A (maV =bV c)
A (—c V —d)

A (bV x>=2)

ANx>4V y<0V h3>6.2)

A h =x?

N h=-2y
A h3=hi+ hy
A (—a V —c)

AN x<—-2Vy<3Vx>3)

L (a>1 )—C;»( c<0 )—C;»( b<0 )74—»@

cr
[h3 > 6.2)—#»@2 > 72@

« conflict clause = symbolic description
of a rectangular region of the search space

which is excluded from future search
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How HySAT works

a: (raVoeVd) pLi: (ax1 foe( c<0 fga( b<0 yiw(x>2)
[} [ [

o: A (-aV —bV )

c: A (—c V —d) DL 2:

ca: N (bV x>-2)

: A (x>4V y<0V h3>6.2)

6: A h=x?
g N hh==2-y

cg: /N h3=h+h

c: A (—aV —c)
co: N (x<—2V y<3V x>3)
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How HySAT works

c:

C

c3:

c

Cs:

Ce:

cr:

cg:

C:

C10 -

(ma V —c V d)
A (maV =bV c)
A (—c V —d)

A (bV x>=2)

ANx>4V y<0V h3>6.2)

A h =x?

N h=-2y
A h3=hi+ hy
A (—a V —c)

AN x<—2Vy<3Vx>3)

DL (a>1 ) c<0 pa( b<0 poa(x>-2)
c9 [} c

DL 2:

e Continue do split and deduce until either
> formula turns out to be UNSAT (unresolvable conflict)

> solver is left with ‘sufficiently small’ portion of the
search space for which it cannot derive any contradiction
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How HySAT works

c:

C

c

C5:

Ce:

cr:

cg:

C:

C10 -

(Fa vV 2e Vo) pLi: (ax1 fie( c<0 pgm( b<0 yiw(x>2)
[} [ [

A (maV =bV c)
A (—c V —d) DL 2:

A (bV x>-2)

ANx>4V y<0V h3>6.2)

A h =x?
N h=-2y . . o
e Continue do split and deduce until either
A h3=hi+ hy .
> formula turns out to be UNSAT (unresolvable conflict)
A (ma V —c) > solver is left with ‘sufficiently small’ portion of the
Ax<—2Vy<3V x>3) search space for which it cannot derive any contradiction

Essentially, a tight integration of interval constraint propagation
with recent propositional SAT-solving techniques.
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The Impact of Learning: Runtime

Examples:

BMC of

platoon ctrl.

bounc. ball
gingerbread map
oscillatory logistic map

Intersect. of geometric bo-
dies

=
o
£
£
o
o
5
o
£
H

Size:
Up to 2400 var.s,
1 > 103 Boolean connectives.

with learning [s]

[2.5 GHz AMD Opteron, 4 GByte physical memory, Linux|
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Extension to Probabilistic Hybrid Systems

Quantifying the probability of misbehavior
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

Wandering

around
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=15&

cookies >=7

toilet

Wandering chats >= 2
around
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=15&

cookies >=7

toilet

Wandering chats >= 2
around

ti=t+2;
toilet := true

U'<t+l
chats++
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=158&
Wandering
around

cookies >=7
t:=(16+2t) /3

toilet
chats >= 2
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=158&
Wandering
around

cookies >=7
toilet
chats >= 2

chats++
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=158&
Wandering
around

cookies >=7
toilet
chats >= 2

U <t+l
chats++

H remaining =
c " exp(-t)
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=15&
cookies >= 7
toilet

Wandering chats >= 2

around

ti=t+2;
toilet := true

U'<t+l
chats++

U <t+l
chats++
H remaining =

Being in time w. probability > 0.75 enforcable? c”exp(-Y)
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Example: The QMC Pause Dilemma

t ;= 0; cookies := 0; toilet := false; chats := 0

t<=15&
cookies >=7
toilet

chats >= 2

t>15 Wandering

[0303 0

ti=t+2;
toilet :=true | t:=t+l

U'<t+l
chats++

t:=t+1

U <t+l
chats++

H remaining =

Being in time w. probability > 0.75 enforcable? c”exp(-Y)

" M. Franzle (Univ. of Oldenburg) | Automated Analysis of Hybrid Systems QMC School 2010 43 / 75



Constraint satisfaction

SAT Theory Solver
+ large Boolean + rich theaories,

formulae e.g. arithmetics

— propositional — conjunctive
variables only systems only
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Constraint satisfaction

SAT Theory Solver
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— propositional — conjunctive
variables only systems only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories
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Constraint satisfaction

SAT Theory Solver

+ large Boolean + rich theaories,
formulae e.g. arithmetics

— propositional — conjunctive
variables only systems only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories

BMC / stability proofs / ...
of hybrid systems
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Stochastic

Constraint satisfaction constraint satisfaction

SAT Theory Solver

+ large Boolean + rich theaories,
formulae e.g. arithmetics

— propositional — conjunctive
variables only systems only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories

BMC / stability proofs / ...
of hybrid systems
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Stochastic

Constraint satisfaction constraint satisfaction

SAT Theory Solver SSAT / SCP

+ large Boolean + rich theaories, + stochastic con—
formulae e.g. arithmetics straint problems

— propositional — conjunctive — finite domain
variables only systems only only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories

BMC / stability proofs / ...
of hybrid systems
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Constraint satisfaction

SAT

+ large Boolean
formulae

— propositional
variables only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories

BMC / stability proofs / ...
of hybrid systems

_ Automated Analysis of Hybrid Systems

Theory Solver

+ rich theories,
e.g. arithmetics

— conjunctive
systems only only

Stochastic
constraint satisfaction

SSAT / SCP

+ stochastic con—
straint problems

— finite domain

SSMT
+ stochastic con-
straint problems

+ atoms from
rich theories
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Constraint satisfaction

SAT

+ large Boolean
formulae

— propositional
variables only

SMT

+ large Boolean
combinations of

+ atoms from
rich theories

BMC / stability proofs / ...
of hybrid systems

_ Automated Analysis of Hybrid Systems

Theory Solver

+ rich theories,
e.g. arithmetics

— conjunctive
systems only only

Stochastic
constraint satisfaction

SSAT / SCP

+ stochastic con—
straint problems

— finite domain

SSMT
+ stochastic con-
straint problems

+ atoms from
rich theories

BMC / stability proofs / ...
of probabilistic hybrid systems
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Approach

SSMT
solving

1 1

reachab. : :

property . .

| |

Analysis : Symbolic :
problem ! encoding ! Certificate
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Approach

1 1

reachab. : :

property . .

| |

Analysis : Symbolic :
problem ! encoding ! Certificate
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Probabilistic Bounded Reachability in
Probabilistic Hybrid Automata
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Worst-Case Probability of Reaching Target

asgn?

g(t2)
pi  asgny
Given

® a PHA A,

® a hybrid state (0, x),

® a set of target locations TL,
the maximum probability P(ka,x) of reaching TL from (0, x) within k € N
steps is

if o e TL,
k 0 if TLAk=0
Plox) = , itog ’
maxi:(d,x)):g(t,-}zj' <p,J : P:s_gi_j(mx) if o€ TLA k > 0.
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Given:
e a PHA A,
® a set of target locations T,
® a depth bound k € N,
® 3 probability threshold tolerable € [0, 1].

Probabilistic Bounded Reachability Problem:

k
O B 0% 50) aim e i P(G’x) < tolerable ?



Given:
e a PHA A,
® a set of target locations T,
® a depth bound k € N,
® 3 probability threshold tolerable € [0, 1].

Probabilistic Bounded Reachability Problem:
O B 0% 50) aim e i Pf‘mx) < tolerable ?

e l.e, is accumulated probability over all paths of reaching bad state
under malicious adversary within k steps acceptable?



Approach

SSMT
solving

1 1

reachab. : :

property . .

| |

Analysis : Symbolic :
problem ! encoding ! Certificate
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Stochastic Satisfiability Modulo Theory
(SSMT)
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Stochastic satisfiability modulo theory (SSMT)

® Inspired by Stochastic CP and Stochastic SAT (SSAT), e.g.
[Papadimitriou 85] [Tarim, Manandhar, Walsh 06] [Balafoutis, Stergiou 06]
[Bordeaux, Samulowitz 07] [Littmann, Majercik 98, dto. + Pitassi 01]

® Extends it to infinite domains (for innermost existentially quantified
variables).

® Extends SSAT to SSAT(T) akin to DPLL vs. DPLL(T).
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[Papadimitriou 85] [Tarim, Manandhar, Walsh 06] [Balafoutis, Stergiou 06]
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® Extends it to infinite domains (for innermost existentially quantified
variables).
® Extends SSAT to SSAT(T) akin to DPLL vs. DPLL(T).

An SSMT formula consists of
® an SMT formula @ over some (arithmetic) theory T, e.g.

©=(x>0V2a-sin(4b) >3) N\ (y >0V 2a-sin(4b) <1)/A...
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Stochastic satisfiability modulo theory (SSMT)

® Inspired by Stochastic CP and Stochastic SAT (SSAT), e.g.
[Papadimitriou 85] [Tarim, Manandhar, Walsh 06] [Balafoutis, Stergiou 06]
[Bordeaux, Samulowitz 07] [Littmann, Majercik 98, dto. + Pitassi 01]

® Extends it to infinite domains (for innermost existentially quantified
variables).
® Extends SSAT to SSAT(T) akin to DPLL vs. DPLL(T).

An SSMT formula consists of
® an SMT formula @ over some (arithmetic) theory T, e.g.

©=(x>0V2a-sin(4b) >3) N\ (y >0V 2a-sin(4b) <1)/A...

® a prefix of existentially and of randomly quantified variables with
finite domains, e.g.

dx € {0, 1} H<(0‘0,61‘(1‘0‘4)>y S {0, 1} d...3...4d...
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Quantification in SSMT

Objective: Determine probability of satisfaction of ¢ under existential
and randomized choices of quantified variables:

1) existential 3 x € dom(x)

Probability corresponds to optimal choice within
range dom(x).

2) randomized (v, o). .. (vimpm)) ¥ € dom(y)

Probability corresponds to random choice within
range dom(y).

p;i is probability of setting y to value v;.
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Galton Board: At each nail, ball bounces left or right with some probability
porl—p,resp. (eg. p=0.5)

H4(0,00),(1,0),(2,02), (3,p3), (4,00 PrOB1 € {0, 1,2, 3, 4}
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Stochastic satisfiability modulo theory (SSMT)

€{0,1,2,3,4}

Ty e {left, middle, right}

€{0,1,2,3,4}:

PO b bbb OE Db b ¢
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Stochastic satisfiability modulo theory (SSMT)

€{0,1,2,3,4}

Ty e {left, middle, right}

€{0,1,2,3,4}:

DO b bbb OE Db b ¢
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Semantics of an SSMT formula
O = @Q1x1 € dom(xy)...Qnx, € dom(x,) : @

Probability of satisfaction Pr(®):

Quantifier-free base cases:

1. Pr(e: @) = 0 if ¢ is unsatisfiable.
2. Pr(e: o) =1 if @ is satisfiable.

4 £ Maximum over all alternatives:

3. Pr(dxeD Q:¢) = rvneag Pr(Q: @lv/x]).

d £ Weighted sum of all alternatives:

4, Pr(dygxeD Q:@)= > p-Pr(Q:eolv/x]).
(v,p)ed
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Semantics of an SSMT formula: Example

© = 3x€{0,1} d(006),1,04)Y €1{0,1}:
(x >0V 2a-sin(4b) >3) A\ (y >0V 2a-sin(4b) < 1)

Pr=06-0+04-1=04 > Pr=06-1+04-1=1

~(1,0.4) (0,0.6) e (1,0.4)

2a-sin(4b) >3 2a-sin(4b) >3
2a-sin(4b) < 1 2a-sin(4b) < 1

unsat sat sat sat

Pr=20 Pr=1 Pr=1 Pr=1
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Translating PHA Problems
to SSMT Problems
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Translating PHA into SSMT

dey, € {1,2}: T!=T — At feool
t'=t+ At

T > 90° T >110°

t'=t+ At

tn try

T'=T — At - fool

\T, . I 1.
o=t 4+ At d(0,0.06),(1,0.04)) rer € {0, 1} :

_ Automated Analysis of Hybrid Systems
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Translating PHA into SSMT

dey, € {1,2}: T!=T — At feool
t'=t+ At

T % 90° T 5110°
I
t o t'=t+ At
T/ = T— At fiop
L [ 1.
Do d(0,0.06),(1,0.04)) rer € {0, 1} :

source /A guard /\ trans A A\ action /N target

. : T =T — At fogg .
(Coo//ng/\ (T >90°) Aley =1)/\ true A( ( A (¢ =t + At) /) )/\COO//ng )\/

(coo//ng/\(T>110°)/\(etr*2)/\ AN (t' =t + At) AN )\/
. (T'=T—At - feoo)) .,

o —
(coo//ng/\(T > 110°) A (eer = 2) A /\( A (¢ =t 1 At) /\ cooling )
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Unwinding

Init(xq) Bad(xq)
N Trans(xg,x1) V Bad(x1)
dt1dgp1dtdyps ... Atdgpi : | A Trans(xy,x5) A |V Bad(x>)
alternating choices A... V...
A Trans(xy_1,Xy) V Bad (xy)
k-bounded reach set hits bad state
BMC(k)

e Alternating quantifier prefix encodes alternation of
e nondeterministic transition selection
e probabilistic choice between transition variants

® Pr(®) = accumulated probability over all paths of reaching bad state

under malicious adversary within k steps = max(s x) initial PE(G’X).
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Init(xq) Bad(xq)
N Trans(xg,x1) V Bad(x1)
dt1dgp1dtdyps ... Atdgpi : | A Trans(xy,x5) A |V Bad(x>)
alternating choices A... V...
A Trans(xy_1,Xy) V Bad (xy)
k-bounded reach set hits bad state
BMC(k)

e Alternating quantifier prefix encodes alternation of
e nondeterministic transition selection
e probabilistic choice between transition variants

® Pr(®) = accumulated probability over all paths of reaching bad state

under malicious adversary within k steps = max(s x) initial PE(G’X).

MaX(g.x) initial Pé‘c’x) > tolerable iff Pr(®) > tolerable
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A Case Study

Networked automation systems
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Case study: Networked automation systems

[ inputs network

I'

RN

‘ : (s4) (s3]

execution

I~ 24 lufts

uniformly distributed 699 lu 470 lu 0lu
over {923 lu,..., 900 lu}

® Networked automation system (NAS) [Greifeneder, Frey 2006]

® typical NAS consists of
e programmable logic controllers (PLCs),
e several sensors and actuators,
e wired or wireless communication networks,
e various input-output devices
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network

24 lults

[0]0]0]0]0]6}
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Case study: Networked automation systems

network

delay:
90%: 1 ts
10%: 2 ts

execution

O00000:

uniformly distributed 699 lu Olu
over {923 lu,..., 900 lu}
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Case study: Networked automation systems
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delay:
90%: 1 ts
10%: 2 ts
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Case study: Networked automation systems

network

execution

. OooToo
470U Ol

over {923 lu,..., 900 lu}

Automated Analysis of Hybrid Systems QMC School 2010 62 / 75



Case study: Discrete-time system model

network
delay:

90%: 1 ts

10%: 2 ts

699 lu

e continuous dynamics of conveyor: % =v, ‘j—‘t’ =a

~ sl =s+v- <%~a~ L vi=v+a-
e discrete computations updating deceleration a, passing messages,. ..
e discrete choices: network delays

e parallel composition of subsystems: Sensors, netw., PLC, PLC-10,...
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object

stableser
0

fi0 i _sendy’ & net.y_compf}
network transmission of sensor A [ fn_ini _rendy’ & nt_compf
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object

C

10 concurrent automata (incl. PLC, time progress)

C

6075 locations in product automaton

C

12 Boolean variables for synchronization

C

: 7
discrete state space: 212 x 6075 > 2.4 x10
o continuous state space spanned by 23 real-valued variables

e

i PLC 10 output

network transmission of sensor A
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object

\ x=1000-1A4

C

10 concurrent automata (incl. PLC, time progress)

C

6075 locations in product automaton

C

12 Boolean variables for synchronization

discrete state space: 212 x 6075 > 2.4 x ].07

continuous state space spanned by 23 real-valued variables

C

C

SSMT provides a symbolic approach to probabilistic bounded
reachability analysis of PHA alleviating state explosion

network transmission of sensor A
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SSMT Solving
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SSMT algorithm

Problem: Determine whether Pr(®) > tolerable, where
e O® = Pre: @ is an SSMT formula
® @ is a Boolean combination of (non-linear) arithmetic constraints
® Pr(®) the satisfaction probability of @

® tolerable is a constant, the probabilistic satisfaction threshold.
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SSMT algorithm

Problem: Determine whether Pr(®) > tolerable, where
e O® = Pre: @ is an SSMT formula
® @ is a Boolean combination of (non-linear) arithmetic constraints
® Pr(®) the satisfaction probability of ®

® tolerable is a constant, the probabilistic satisfaction threshold.

Solution: Take appropriate SMT solver, implant branching rules for
quantifiers, add rigorous proof-tree pruning:

® iSAT solver for mixed Boolean and non-linear arithmetic problems
[Franzle, Herde, Ratschan, Schubert, Teige: 2006+-2007]

® iSAT + branching rules for quantifier handling + pruning rules
~> SISAT [Frénzle, Eggers, Hermanns, Teige: QAPL 2008, HSCC
2008, CPAIOR 2008, ADHS 2009, JLAP 2010]
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Naive SSMT solving

® Enumerate assignments to quantified variables
® Call subordinate SMT solver on resulting instances
© Aggregate results accord. to SSMT semantics, compare to tolerable

® = 3Ix €{0,1} d((0,06),1,04) Y € {0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

Pr=06-0+04-1=0.4/

(0,06) — (1,0.4) (0,0.6

2a-sin(4b) >3 2a-sin(4b) >3
2a-sin(4b) < 1 2a-sin(4b) < 1
unsat J | sat J | sat

Pr=20 Pr=1 Pr=1
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SSMT algorithm: Pruning rules

Scalability: Naive algorithm must traverse whole quantifier tree of size

in number of quantified variables

Goal: Skip major parts based on semantic inferences

Measures:

Domain reduction by logical and numerical deductions
Excluding conflicting (partial) assignments (conflict clauses)
Thresholding [Littman 1999]

Solution-directed backjumping [Majercik 2004]
Probability-based value decision heuristics

Probability learning (akin to memoization
[Majercik, Littman 1998])

e Exploit desired accuracy of result

® For iterative BMC: Solution caching

_ Automated Analysis of Hybrid Systems QMC School 2010
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Efficient quantifier handling: Thresholding

Given:

e O= dxe{0,1} d06),1,04)y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1),
® lower threshold t; = 0.3,

® upper threshold ¢, = 0.5.
Objective:

? ?
e Pr(®)<t; or Pr(®)>1t, or compute tj<Pr(®)<t, ?
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Efficient quantifier handling: Thresholding

®© = dx €{0,1} d0,0.),1,04)Y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)
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Efficient quantifier handling: Thresholding

®© = dx €{0,1} d0,0.),1,04)Y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

t;=20.3, t, = 0.5 Pr(®) > 0.6

wox=1 T

t; =03, t, =05 @ Pr>06-1=06

y =0
p=0.6
Pr=1

2a-sin(4b) < 1
satisfiable

Automated Analysis of Hybrid Systems QMC School 2010 70 / 75



Efficient quantifier handling: Thresholding

© = 3x€{0,1} d((0,0.6),(1,04)Y €{0,1}:
(x >0V 2a-sin(4b) > 3) A (y >0V 2a-sin(4b) < 1)

t =03, t, =05

x=1

t=03,t=05( y

-
\

iSAT:
2a-sin(4b) < 1
| satisfiable |

Pruning occurs

e when satisfaction probability of investigated branches > t,,
e when probability mass of remaining branches < ¢,
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Case study: Analysis

uniformly distributed 699 lu
over {923 lu,..., 900 Iu}

Goal: Determine whether probab. of stopping close to drilling pos. sufficient

(1 e find BMC unwinding depth k s.t. object has stopped
e i.e, find k s.t. Pr(PBMC(k)) =1 with TARGET (x) := tu__stop
~ holds for k = 44, runtime 134 min (with thresholding)
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uniformly distributed 699 Iu 470 lu
over {923 lu,..., 900 Iu}

Goal: Determine whether probab. of stopping close to drilling pos. sufficient

(1 e find BMC unwinding depth k s.t. object has stopped
e i.e, find k s.t. Pr(PBMC(k)) =1 with TARGET (x) := tu__stop
~ holds for k = 44, runtime 134 min (with thresholding)

\ TARGET (x) | probability | runtime |
e | 100> obj pos N\ obj pos>0 | =0.397345[16,29] | 71 min
100 > obj pos /\ obj pos >0 13 min
100 > obj pos /\ obj pos >0 11 min
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SSMT algorithm: Early experimental results

iPr>06 (Pr>08 {Pr>0.25 {Pr>05 Pr>0.73

)
@
2,
o
€
2

runtime [sec]

unwinding depth unwinding depth

Impact of thresholding (left) and solution-directed backjumping (right)
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SSMT algorithm: Early experimental results

iPr>06 Pr>08 {Pr>0.25 {Pr>05 Pr>0.73

)
@
2,
)
£
€
2

runtime [sec]

unwinding depth unwinding depth

Impact of thresholding (left) and solution-directed backjumping (right)

SSMT often traverses only minor fraction of quantifier domains!
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SSMT algorithm: Recent experimental results

o'
o}
RN
o
£
=]
c
=1
2

Basic ——
Basic+Accur0.1
Basic+SDB - oo
Basic+SDB+PrLearn 8
Basic+SDB+PrLearn+ActHeu —=—
Ba5|c+SDB+PrLearn+ActHeu+AccurO 1
BaS|c+S‘DB+PrLearnfrActHeu+THQ 5 -

15 20 25
unwinding depth
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SSMT algorithm: Recent experimental results

Basic —+—
Basic+Accur0.1
Basic+SDB -*

BasictSDB+PrLearn &
Basic+SDB+PrLearn+ActHeu —=—
Basic+SDB+PrLearn+ActHeu+Accur0.1
Basic+SDB+PrLearn+ActHeu+TH0.5

15 20
unwinding depth

[ depth 9 || Basic ][ B4+Accur0.1 [ B+SDB [ +PrLearn | +ActHeu [ +THO.5 |
runtime 2160.99 392.65 100.64 PARGK] 9.12 1.73
[sec]
speed-up 1 5.5 21 92 237 1249
wrt. basic
Result exact safe approx. exact
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SSMT algorithm:

runtime [sec]

N
1)
S

Recent experimental results

Accuracy reduction far less effective than accuracy-preserving optimizations!

Ba DBTPILe ACUHeUTACCUTD:
Basic+SDB+PrLearn+ActHeu+TH0.5

20

unwinding depth

[ depth 9 || Basic ][ B4+Accur0.1 [ B+SDB [ +PrLearn | +ActHeu [ +THO.5 |
runtime 2160.99 392.65 100.64 PARGK] 9.12 1.73
[sec]
speed-up 1 5.5 21 92 237 1249
wrt. basic
Result exact safe approx. exact
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Synopsis

o Hybrid systems

e are a reasonable formalization of the interaction of embedded control
and physical environment

e there is rapidly growing body of theory pertaining to hybrid systems
e the theory bridges various fields of science, among them

e control theory

e discrete event systems

e numerical analysis

e arithmetic constraint solving
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e discrete event systems
e numerical analysis
e arithmetic constraint solving

® Arithmetic constraint solving

e is an enabler for fully symbolic analysis of hybrid systems
e thus providing prospects for scalable automatic analysis procedures;
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Synopsis

o Hybrid systems
e are a reasonable formalization of the interaction of embedded control
and physical environment
e there is rapidly growing body of theory pertaining to hybrid systems
e the theory bridges various fields of science, among them
e control theory
e discrete event systems
e numerical analysis
e arithmetic constraint solving

® Arithmetic constraint solving
e is an enabler for fully symbolic analysis of hybrid systems
e thus providing prospects for scalable automatic analysis procedures;
e its solving power is progressing much more rapidly than the advances in
computing hardware
e yet still in its infancy.
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