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Formal Verification

e Key Problems
— computable (decidable) only for simple dynamics
— computationally expensive

— representation of / computation with continuous sets



Formal Verification

e Fighting complexity with overapproximations
— simplify dynamics
— set representations

— set computations

e Overapproximations should be
— conservative
— easy to derive and compute with
— accurate (not too many false positives)
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Formal Verification
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Modeling Hybrid Systems

e Example: Bouncing Ball
— ball with mass m and position x in free fall
— bounces when it hits the ground at x = 0
— initially at position z_, and at rest
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Part | — Free Fall

e Condition for Free Fall

— ball above ground: r >0

e First Principles (physical laws)

e gravitational force :
Fy=—mg

g =9.81m/s?

e Newton's law of motion :
mr = F,




Part | — Free Fall

e Obtaining 1 st Order ODE System

Iy

ma

Iy

e ordinary differential equation & = f(x)

e transform to 1st order by introducing variables

for higher derivatives

e here: v = z:
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Part || — Bouncing

e Conditions for “Bouncing”

e ball at ground position: x =0
e downward motion: v < 0
e Action for “Bouncing”
e Vvelocity changes direction
e loss of velocity (deformation, friction)

o v:=—cv,0<¢c<1
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Combining Part | and Il

]
j

Free Fall

e While z > 0,
T )

-9

v

Bouncing

e ifzr=0andv <0
v = —Cv

continuous dynamics

= f(z)

discrete dynamics

red

O
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Hybrid Automaton Model

initial conditions
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Hybrid Automata - Semantics

e RuUN

— sequence of discrete transitions and time elapse

e EXxecution

— run that starts in the initial states

Ay Y

z,(t)
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Execution of Bouncing Ball

position x

velocity v

time ¢

time ¢

15



Execution of Bouncing Ball

e State-Space View (infinite time range)

position x

velocity v
discrete transition
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Formal Verification
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Computing Reachable States

e Compute successor states

e discrete transitions : Posty(R)

e time elapse : Post.(R)

RlzPostC(Ro)\
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Computing Reachable States

e Fixpoint computation
e [nitialization: Ry = In:
e Recurrence: Ry,1 = Ry U Posty(Ry) U Post.(Ry)
e Termination: Ry,1 = Ry = Reach = Ry.

e Problems

— in general termination not guaranteed

— time-elapse very hard to compute with sets
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Chapter Summary

e Why should we care?

— Reachability Analysis is a set-based computation that can
answer many interesting questions about a system (safety,
bounded liveness,...)

e What's the problem?
— The hardest part is computing time elapse.

— Explicit solutions only for very simple dynamics.

e What's the solution?
— First study simple dynamics.

— Then apply these techniques to complex dynamics.
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Outline

Linear Hybrid Automata
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In this Chapter...

e A very simple class of hybrid systems

e Exact computation of discrete transitions and time
elapse

— Note: Reachability (and pretty much everything else) is
nonetheless undecidable .

e A case study
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Linear Hybrid Automata

e Continuous Dynamics
e piecewise constant: z =1
e intervals: & € [1, 2]
e conservation laws: 1 + 22 =0
e general form: conjunctions of linear constraints
a- b, a€Z™beZ,xe{<, <}

= convex polyhedron over derivatives
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Linear Hybrid Automata

e Discrete Dynamics

e affine transform: =z :=ax + b
e with intervals: x5 := z; £ 0.5

e general form: conjunctions of linear constraints (new value z’)

a-r+ad-2'>b  a,ad €Zbel,xe{<,<}

= convex polyhedron over x and z’
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Linear Hybrid Automata

e |nvariants, Initial States

e general form: conjunctions of linear constraints

a-x b, a €Z"be Z,xe {<, <},
= convex polyhedron over zx
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Reachabllity with LHA

e Compute discrete successor states  Post (.S)
— all o’ for which exists x € S s.t.
ez c(
e ' € R(x) N Inv
e Operations:
— existential quantification
— Intersection

— standard operations on convex polyhedra, but of exponential
complexity
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Reachability with LHA

e Compute time elapse states Post (.5)

e Theorem [Alur et al.]

— Time elapse along arbitrary trajectory iff time elapse along
straight line (convex invariant).

|

— time elapse along straight line can be computed as projection
along cone [Halbwachs et al.]

Inv
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Reachability with LHA

{1.

get projection
cone

~

[Halbwachs, Henzinger, 93-97]
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Multi-Product Batch Plant
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Multi-Product Batch Plant

%Ui@ ﬂf@ %ﬁ\ e Cascade mixing process
T

c

— 3 educts via 3 reactors
et oo — 2 products

e Verification Goals

— Invariants

e overflow

e product tanks never empty

— Filling sequence

e Design of verified
controller
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Controller

Verification with PHAVer

Controlled Plant

e Controller + Plant

— 266 locations, 823 transitions
(~150 reachable)

— 8 continuous variables

e Reachability over infinite time
— 120s—1243s, 260—600MB

— computation cost increases
with nondeterminism
(intervals for throughputs,
initial states)
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Verification with PHAVer
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Outline

Ill. Piecewise Affine Hybrid Systems
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In this Chapter...

e Another class of (not quite so) simple dynamics

— but things are getting serious (no explicit solution for sets)

e Exact computation of time elapse only
points in time

— used to overapproximate continuous time

e Efficient data structures

at discrete
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Piecewise Affine Hybrid Systems

e Affine dynamics
— Flow:
& = Ax + b (deterministic)

& € Az + B, with B a set (hondeterministic)

— For time elapse it's enough to look at a single location.
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Linear Dynamics

e Let’s begin with “autonomous” part of the dynamics:

x=Ax, xe€R"

e Known solutions:
— analytic solution in continuous time

— explicit solution at discrete points in time
(up to arbitrary accuracy)

e Approach for Reachability:
— Compute reachable states over finite time: Reachy, y(X,;)

— Use time-discretization, but with care!

36



Time-Discretization for an Initial Point

e Analytic solution:  z(t) = ez "
x(t
o With ¢ = 6k : s
Lo
r(6(k+1) = eMx(fk) To| 1

e EXplicit solution in discretized time (recursive):

Zo LIni

eAdg,

Lk+1

N multiplication with const. matrix e4?
= linear transform
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Time-Discretization for an Initial Set

e EXplicit solution in
discretized time

Xo = X
X1 = ePXy

e Acceptable solution for purely continuous systems
— z(t) is in €(6)-neighborhood of some X,

e Unacceptable for hybrid systems
— discrete transitions might “fire” between sampling times
— if transitions are “missed,” x(¢) not in ¢(§)-neighborhood

38



Bouncing Ball

///j
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— In other examples this error might not be as obvious...
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Reachabillity by Time-Discretization

e Goal:
— Compute sequence Q, over bounded time [0,/N§] such that:
Reach[O,N(g] (X]nz) g Qo U Ql U...U QN

e Approach:
— Refine Q, by recurrence: N Q,
Qk+1 = GA(SQk

— Condition for Q_:
Reach(o 5)(X1ni) € Qo

40



Time-Discretization with Convex Hull

e Overapproximating Reachy 4:

X1

X0

Reachpy 51(X1n:) Conv(Xop, X1) Bloat(Conv(Xo, X1))

41



e Bouncing Ball:

Time-Discretization with Convex Hull

T T
Xl

Xy
€




Nondeterministic Affine Dynamics

e Let’s include the effect of inputs:
r=Ax+ Bu, xecR",uecUCRP

— variables z ,...,z_, Inputs «,...,u
e Input w models nondeterminism

z € Ax + BU

— used later for overapproximating nonlinear dynamics
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Nondeterministic Affine Dynamics

e Analytic Solution

x(t) = e*z(0) —|—/ e0=7) Bu(7)dr
R/_/ \\0 —~ /

autonomous influence of
dynamics inputs

/ __— influence of inputs
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Nondeterministic Affine Dynamics

e How far can the input “push” the system in J time?

: . llalls_
e VV = box with radius eﬁTH1supu€U||ch1J||

Qo
Qi1

Bloat(Conv(Xni, e X)) @V
€A5Qk GV

e Minkowski Sum: A@¢B={a+blac A, bc B}

e a
NI
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Nondeterministic Affine Dynamics

QQ = GA(SQl D V
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Wrapping Effect

e Fight complexity by overapproximation

e Overapproximated Seqguence
Qk+1 = Approa:(eA5Qk ®V)

— accumulation of approximations — Wrapping Effect

— exponential increase in approximation error!
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Wrapping Effect

e Error Propagation in Conventional Algorithm:
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Wrapping Effect-Free Algorithm

e Computing the sum of Sequences instead of a
sequence of sums [Girard, LeGuernic, Maler, 2006]
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I\VV. Support Functions

Outline

50



Support Functions

PP(d) = ma»Xa:ePdTﬂﬁ

\ max. signed distance of P to
origin projected in direction d
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Support Functions

If we know the value of p,(d),
we know Pis in the halfspace

{z|d"z < pp(d)}
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Support Functions

e

=

d;

p(dy),... we

Intersection of the halfspaces
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Support Functions

If we know p,(d,), pp(d,),... we
know Pis inside the intersection of

the halfspaces
= outer polyhedral approx.
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Computing with Support Functions

e Many set operations are simple operations on
support functions

— Affine Transform: pap(d) = pp(ATd)
— Minkowski sum:  ppeqg(d) = pp(d) + po(d)

— Convex hull: Peruii(P,Q)(d) = max(pp(d), pg(d))
e Problems:

— Containment: use outer/inner polyhedral approx.

— Intersection: approx. intersection with halfspace cheap,

with polyhedron = multivariable optim. problem
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Comparison of Set Representations

Operators Polyhedra Zonotopes | Support Functions

Constraints Vertices

Affine transform - ++ ++ ++
Minkowski sum - = ++ ++
Intersection ++ - - +/-
Containment + - 2 +/(-)
Convex hull = + - ++
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Computing with Support Functions

e |f explicit set representation needed (display,
simplification,...), sample the support function for
given directions and use the outer polyhedral
approximation.

— arbitrarily close if enough directions are used

e Computing the support function of a polyhedron

— solve linear program (very cheap)

S7



Filtered Switched Oscillator

0.6 —

e Switched oscillator ol B ‘
— 2 state variables LN R =

— similar to many circuits ol N N H

(Buck converters,...) f ANVEERN
-0.2 \\

-04

e plus m " order filter | R\

— damps output signal

_06 | | | \ |

L L . . . | L 1 L L 1 L
-0.8-06-04-020.0 0.2 04 06 0.8 10

e Piecewise affine dynamics
— 4 discrete states

— total 2+m continuous state variables
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Filtered Switched Oscillator

e 2"d order oscillator + 8 ™ order filter

— 10 state variables

_06 L | L | P | s i PR | PR L | L | L
-0.8-0.6-0.4-0.200 0.2 04 06 0.8 1.0

2*n box constraints
(axis directions)

4 | | | i 1 1 | |
-0.8-0.6-04-0.20.0 0.2 04 06 0.8 1.0

2*n2 octagonal constraints
(£ X £ %)
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Filtered Switched Oscillator

e Tool Performance (on virtual machine)

1000
100
timein s
(VM)
10

slower due to 8 discrete
jumps instead of 6

__ until convergence

——Box
-8 QOctagonal

-

Nb. of variables
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Verification Tools for Hybrid Systems

e HyTech: LHA

e PHAVer: LHA + affine dynamics

e d/dt: affine dynamics + controller synthesis

e Matisse Toolbox: zonotopes

e HSOLVER: nonlinear systems
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