
Bounded Model Checking
for Finite-State Systems

Copenhagen, 2 March 2010

Quantitative Model Checking PhD School

Keijo Heljanko

Aalto University

Keijo.Heljanko@tkk.fi

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 1/54

Co-Author of Slides

Many of the slides used in this tutorial are from Advanced
Tutorial on Bounded Model Checking at ACSD 2006 /
Petri Nets 2006, co-authored with my colleague:

D.Sc. (Tech.) Tommi Junttila
Email: Tommi.Junttila@tkk.fi
Homepage: http://users.ics.tkk.fi/tjunttil

Our affiliation: Aalto University, Department of
Information and Computer Science

Many thanks to Tommi for letting me use also his slides in

preparing this tutorial.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 2/54

http://users.ics.tkk.fi/tjunttil

Thanks to co-authors on BMC

Roland Axelsson & Martin Lange, LMU München

Armin Biere, Johannes Kepler University of Linz

Toni Jussila, OneSpin Solutions

Misa Keinänen, European Batteries

Timo Latvala, Space Systems Finland

Ilkka Niemelä, Aalto University

Matti Niemenmaa, Aalto University

Jussi Rintanen, National ICT Australia

Viktor Schuppan, Fondazione Bruno Kessler

Siert Wieringa, Aalto University

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 3/54

Software failures

Software is used widely in many applications where a bug
in the system can cause large damage:

Safety critical systems: airplane control systems,
medical care, train signalling systems, air traffic
control, etc.

Economically critical systems: e-commerce systems,
Internet, microprocessors, etc.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 4/54

Price of Software Defects

Two very expensive software bugs:

Intel Pentium FDIV bug (1994, approximately $500
million).

Ariane 5 floating point overflow (1996, approximately
$500 million).

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 5/54

Pentium FDIV - Software bug in HW

4195835 - ((4195835 / 3145727) * 3145727) = 256

The floating point division algorithm uses an array of con-

stants with 1066 elements. However, only 1061 elements

of the array were correctly initialized.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 6/54

Ariane 5

Exploded 37 seconds after takeoff - the reason was an

overflow in a conversion of a 64 bit floating point number

into a 16 bit integer.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 7/54

Model Checking

In model checking every execution of the model of the
system is simulated obtaining a Kripke structure M
describing all its behaviors. M is then checked against a
property ψ:

Yes: The system functions according to the specified
property (denoted M |= ψ).
The symbol |= is pronounced “models”,
hence the term model checking.

No: The system is incorrect (denoted M 6|= ψ), a
counterexample is returned: an execution of the
system which does not satisfy the property.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 8/54

Models and Properties

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model
Executing

ψM |= ψ ?M

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 9/54

Benefits of Model Checking

In principle automated: Given a system model and a
property, the model checking algorithm is fully
automatic.

Counterexamples are valuable for debugging.

Already the process of modelling catches a large
percentage of the bugs: good for rapid prototyping of
concurrency related features.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 10/54

Drawbacks of Model Checking

State explosion problem: Capacity limits of model
checkers can be exceeded.

Manual modelling often needed:
Model checker used might not support all
features of the final implementation language.
Abstraction used to overcome capacity problems.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 11/54

Model Checking in the Industry

Microprocessor design: Several major
microprocessor manufacturers use model checking
methods as a part of their design process.

Mission Critical Software: NASA space program is
model checking code used by the space program.

Operating Systems: Microsoft is using model
checking to verify the correct use of locking
primitives in Windows device drivers.

Safety Critical Systems: Model checking is used to
find bugs in many safety critical systems

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 12/54

Finite-State Model Checking Tools

Explicit State Model Checking: Tools include Spin,
Murϕ Java Pathfinder DiVinE, CADP, etc.

BDD based Symbolic Model Checking: Tools include
NuSMV 2, VIS, Cadence SMV, etc.

Bounded Model Checking: Tools include NuSMV 2,
CMBC, VIS, Cadence SMV, etc.

In addition there are quantitative model checking tools ex-

cluded from this list but you will hear about in the next few

days.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 13/54

http://www.spinroot.com/
http://verify.stanford.edu/dill/murphi.html
http://babelfish.arc.nasa.gov/trac/jpf
http://divine.fi.muni.cz
http://www.inrialpes.fr/vasy/cadp/
http://nusmv.irst.itc.it/
http://vlsi.colorado.edu/~vis/
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/
http://www.cs.cmu.edu/~modelcheck/cbmc/
http://vlsi.colorado.edu/~vis/
http://www.kenmcmil.com/smv.html

Bounded Model Checking

Originally presented in the paper: Armin Biere,
Alessandro Cimatti, Edmund M. Clarke, Yunshan
Zhu: Symbolic Model Checking without BDDs.
TACAS 1999: 193-207, LNCS 1579.

A closely related approach had already been used
earlier to solve artificial intelligence planning
problems in: Henry A. Kautz, Bart Selman:
Planning as Satisfiability.Proceedings of the 10th
European conference on Artificial intelligence
(ECAI’92): 359-363, 1992, Kluwer.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 14/54

http://link.springer.de/link/service/series/0558/bibs/1579/15790193.htm
http://citeseer.ist.psu.edu/kautz92planning.html

Basics of Bounded Model Checking

The basic idea is the following: Encode all the
executions of the system M of length k into a

propositional formula |[M]|k.

Conjunct this formula with a formula |[¬ψ]|k which is
satisfiable for all executions the system of length k
which violate the property ψ.

If the formula |[M]|k ∧|[¬ψ]|k is satisfiable, a
counterexample has been found.

If the formula |[M]|k ∧|[¬ψ]|k is unsatisfiable, no
counterexample of length k exists.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 15/54

SAT

The propositional satisfiability problem (SAT) is one
of the main instances of NP-complete problems.

Thus no polynomial algorithms for SAT are known.

However, there are highly efficient SAT solvers
available such as zChaff and MiniSAT which are able
solve many bounded model checking problems
efficiently.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 16/54

http://en.wikipedia.org/wiki/NP-complete
http://www.princeton.edu/~chaff/zchaff.html
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

SAT References

zChaff: Matthew W. Moskewicz, Conor F. Madigan,
Ying Zhao, Lintao Zhang, Sharad Malik: Chaff:
Engineering an Efficient SAT Solver. DAC 2001:
530-535, ACM.

MiniSAT: Niklas Eén, Niklas Sörensson:
An Extensible SAT-solver. SAT 2003: 502-518, LNCS
2919.

SATLive! - Links to SAT related events, tools, position
announcements, etc.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 17/54

http://portal.acm.org/citation.cfm?id=379017\&dl=ACM\&coll=portal
http://springerlink.metapress.com/openurl.asp?genre=article\&issn=0302-9743\&volume=2919\&spage=502
http://www.satlive.org/

Basic Setup

For simplicity first consider the following setup:
As system models we consider systems whose
state vector s consist of n Boolean state variables
〈s[0],s[1], . . . ,s[n−1]〉.
We take k +1 copies of the system state vector
denoted by s0,s1, . . . ,sk.

Let I(s) be the initial state predicate of the
system, and T (s,s′) be the transition relation
both expressed as propositional formulas.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 18/54

A Simplifying Assumption

For simplicity we assume T (s,s′) to be be total for
now, i.e., every reachable state s should have a
successor s′ such that T (s,s′) holds.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 19/54

Unrolling the Transition Relation

The executions of the system of length k are
captured by the formula:

|[M]|k = I(s0)∧
k̂

i=1

T (si−1,si)

For k = 3 this becomes:

|[M]|3 = I(s0)∧T (s0,s1)∧T (s1,s2)∧T (s2,s3)

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 20/54

Circuit BMC Unrolling

OR

AND

OR

OR

AND

OR

OR

AND

OR

s3[0]

s3[1]

s3[2]

s2[0]

s2[1]

s2[2]

s1[0]

s1[1]

s1[2]

s0[1]

s0[2]

s0[0]

I(s0) T (s0,s1) T (s2,s3)T (s1,s2)

0

0

0

i2[1]i2[0]i1[1]i1[0]i0[0] i0[1]

1

1

1

What do the input vectors i0, i1, and i2 need to be to reach

the state s3 = 〈1,1,1〉?

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 21/54

Circuit BMC Unrolling Solution

OR

AND

OR

OR

AND

OR

OR

AND

OR

s3[0]

s3[1]

s3[2]

s2[0]

s2[1]

s2[2]

s1[0]

s1[1]

s1[2]

s0[1]

s0[2]

s0[0]

I(s0) T (s0,s1) T (s2,s3)T (s1,s2)

0

0

0

i2[1]i2[0]i1[1]i1[0]i0[0] i0[1]

1

1

1

1 1 11 1 1

0

0

1

0 0

0

1

1

0

The input vectors i0 = 〈1,1〉, i1 = 〈1,1〉, and i2 = 〈1,1〉

will reach the final state s3 = 〈1,1,1〉.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 22/54

Expressing Invariants

Suppose the property ψ we want to model check is
that an invariant property P(s) holds for every
reachable state of the system M.

Now we get that:

|[¬ψ]|k =
k

_

i=0

¬P(si)

Thus for k = 3 this becomes:

|[¬ψ]|3 = ¬P(s0)∨¬P(s1)∨¬P(s2)∨¬P(s3)

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 23/54

Final formula

Thus the final formula |[M]|k ∧|[¬ψ]|k for k = 3
becomes:

I(s0)∧T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧

(¬P(s0)∨¬P(s1)∨¬P(s2)∨¬P(s3))

If the formula is satisfiable, then an execution of the
system of length 3 exists which violates the invariant
property P(s) in some state during the execution.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 24/54

Reachability Diameter

If the formula is unsatisfiable, we have proved that
there is no execution of length at most 3 that violates
the invariant.

Clearly for every finite state system there is some
bound d called the reachability diameter such that
from the initial state every reachable state is
reachable with an execution of at most length d.

By taking d = 2n, where n is the number of state bits,
we could guarantee completeness.

Unfortunately computing better approximations of d
are computationally hard in the general case.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 25/54

Unsatisfiable - Increase the bound

Unfortunately the approach of taking d = 2n is not
viable for anything but trivially small systems.

Usually d is only increased by a small amount, say 1,
and the procedure is repeated from the beginning
until some resource limit (running time, memory, etc.)
is hit.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 26/54

BMC: Pros and Cons

Boolean formulas can be more compact than BDDs

Leverages efficient SAT-solver technology

Minimal length counterexamples (often, not always)

Basic method is incomplete

Not always better than BDD-based methods or
explicit state model checking

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 27/54

BDDs vs. BMC on Hardware Designs

Runtimes of NuSMV 2.2.3/BDDLTL and NuSMV
2.2.3+our BMC engine presented in CAV05 on
synchronous HW designs with PLTL properties

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 28/54

Alternative Transition Relations

When checking for reachability properties such as
the violation of invariants, in asynchronous systems
we can often replace the transition relation T (s,s′)
with an alternative transition relation definition
T ′(s,s′) provided that:

Every state that is reachable from the initial state
s0 using T (s,s′) must be reachable from s0 using
T ′(s,s′).
There should not be any new states reachable
from s0 using T ′(s,s′) which are not reachable
from s0 using T (s,s′).

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 29/54

Encoding the Transition Relation

There are now in fact many different ways to pick and
encode an alternative transition relation T ′(s,s′) if we
consider asynchronous systems containing
concurrency.

The earliest paper to consider alternative transition
relations in BMC is:
Keijo Heljanko: Bounded Reachability Checking with
Process Semantics. CONCUR 2001: 218-232,
LNCS 2154.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 30/54

http://link.springer.de/link/service/series/0558/bibs/2154/21540218.htm

A Wish-List for Encodings

A wish-list of mutually conflicting requirements for
T ′(s,s′) and its encoding:

Compact, hopefully linear encoding size in the
size of the system description.
Covers as many reachable states as possible for
each bound k without losing soundness or
completeness.
Efficiently solvable by the SAT solver.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 31/54

Transition Relation Encoding

Note that in the list of requirements we do not
explicitly list that the number of state variables n
should be minimized.

This is often one of the main things to optimize with a
BDD based symbolic model checker.

Having too compact an encoding of the state vector
can lead to losses in the SAT solver efficiency!

More research is needed on how to more efficiently
encode transition relations for different classes of
systems. There are dramatic performance
differences, at least for asynchronous systems.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 32/54

Alternative Transition Relations

Next we describe alternative transition relations for
synchronization of LTSs.

The encoding has been published in:
Toni Jussila, Keijo Heljanko, Ilkka Niemelä:
BMC via on-the-fly determinization. STTT 7(2):
89-101 (2005).

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 33/54

http://dx.doi.org/10.1007/s10009-004-0178-1

Intuition: LTS Semantics

We use the standard synchronization construction for
LTSs (see the paper mentioned in the previous slide
for details): The system consists of n LTSs
L1,L2, . . . ,Ln composed as L = L1

f
L2

f
· · ·

f
Ln.

Each LTS has its own alphabet. The system L can
make a move with a letter a iff every LTS with a in its
alphabet is able to perform it.

When a is performed, every LTS with a in its alphabet
moves, while the others do not change their state.

In addition, each LTS can make local τ-labelled
moves on their own.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 34/54

Alternative Semantics

Next we show by using a running example what the
state spaces induced by the presented alternative
semantics for LTSs are.

Thanks to Toni Jussila for allowing the use of Figures
from his Thesis in the following slides.
Toni Jussila.
On bounded model checking of asynchronous
systems. Research Report A97, Helsinki University
of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, October 2005. Doctoral
dissertation.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 35/54

http://lib.tkk.fi/Diss/2005/isbn9512279045/

LTSs: Running Example

a

τ a c c

d d

a

s10

s0

s4 s5

s9

s1

s6 s7

s2 s3

s8

s11

Σ1 = Σ2 = {a},Σ3 = Σ4 = {c,d}

The complete system is L = L1
f

L2
f

L3
f

L4.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 36/54

LTSs: Interleaving Semantics

The (interleaving) reachability graph is as expected:

τ a

a τ a

a τ a

c

d

c

d

c

d

c

d

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉

a

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 37/54

LTSs: Step Semantics

In step reachability graph a set of synchronizations are
independent if they occur in disjoint sets of LTSs. Such
sets can be concurrently executed:

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉
〈s9,s6,s10,s11〉

〈a,a,ε,ε〉 〈τ,ε,ε,ε〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈τ,ε,ε,ε〉

〈τ,ε,ε,ε〉

〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈a,a,c,c〉

〈a,a,d,d〉

〈a,a,c,c〉

〈a,a,d,d〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉 〈ε,ε,c,c〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈τ,ε,c,c〉

〈τ,ε,d,d〉

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 38/54

Properties Steps Semantics

The transition relation for steps can be represented
as: T (si,ai,si+1), where ai is the set of actions fired
at time i, modeled as free input variables.

Because all singleton sets are also steps, the
(interleaving) reachability graph is always a subgraph
of the step reachability graph.

Because the final state reached after firing a step is
the final state of every interleaving of the step, no
new reachable states have been introduced.

The reachability diameter of the system is in the
worst case as big as in the interleaving case.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 39/54

Interleaving vs. Steps

Step transition relation can be encoded without extra
blowup, often counterexamples are found with
smaller bounds using less SAT solver time.

Quite often even small reductions in the required
bound translate to large performance differences.

The step encoding also is more “local” than the
interleaving encoding:

We have not yet found a domain where the
interleaving encoding would be superior in
performance to the step encoding.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 40/54

Process Semantics

The step executions introduce a lot of edges to the
step reachability graph that allow states to be
reached with many different step executions.

Can we somehow pick a unique canonical
representative of such “concurrent” behavior, and
thus reduce the number of different executions the
SAT solver has to consider?

The answer turns out to be positive. The resulting
semantics will be called process semantics.

There is even a compact (linear size) SAT encoding
to capture the process semantics.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 41/54

LTSs: Process Semantics

In the process semantics a synchronization can happen
at step Si only if at least one participant of it was active at
step Si−1:

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉
〈s9,s6,s10,s11〉

〈a,a,ε,ε〉 〈τ,ε,ε,ε〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈τ,ε,c,c〉 〈a,a,c,c〉

〈a,a,d,d〉

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 42/54

Properties of Processes

The transition relation for processes can be
represented as: T (si,ai−1,ai,si+1), where ai is the
set of actions fired at time i and ai−1 is the set of
actions fired at time i−1.

Each state of the system is reachable by a process
execution that is among the shortest step executions
to reach that state.

Furthermore, the process reachability diameter is
always as small as the step reachability diameter.

There are at most as many process executions as
there are interleaving executions of length k.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 43/54

Steps vs. Processes

There can be exponentially more step and
interleaving executions of length k than there are
process executions.

The processes executions are basically the Foata
normal form from the theory of Mazurkiewicz traces.

Processes can be seen as “the optimal partial order
reduction method”: Each partial order execution has
exactly one representative.

Unfortunately there is some bad news: processes
are ofter slower than steps with SAT solvers
incorporating learning.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 44/54

Experiments: Different Semantics

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 45/54

Symbolic Subset Construction

The FSA subset construction can be used to
determinize nondeterministic state machines
symbolically inside BMC.

The tricky part is the correct handling of the τ-moves.

By doing this, the number of executions through the
statespace of the system is further reduced.

It has also other applications: One can, for example,
create a BMC encoding that accepts all words not in
the language of L. This has uses, for example, in
refinement checking of two products of LTSs.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 46/54

LTSs: Determinised Interleaving

Interleaving combined with determinising each
component symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

c c

d d

a

a

a

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 47/54

LTSs: Determinised Step

Steps combined with determinising each component
symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈ε,ε,c,c〉 〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈a,a,ε,ε〉

〈a,a,c,c〉

〈a,a,d,d〉

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 48/54

LTSs: Determinised Process

Processes combined with determinising each component
symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉

〈a,a,ε,ε〉

〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈a,a,c,c〉

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 49/54

On-the-fly Determinization Results

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 50/54

Model Checking LTL-X

One can also do model checking of the temporal
logic LTL-X with step semantics.

LTL-X is the subset of LTL where the next-time
operator X has been removed. This restriction of the
logic is often done also with other partial order
methods.

For details, see:
Keijo Heljanko, Ilkka Niemelä:
Bounded LTL model checking with stable models.
TPLP 3(4-5): 519-550 (2003), Cambridge University
Press.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 51/54

http://arxiv.org/abs/cs.LO/0305040

Steps and AI Planning

In AI planning papers a step like optimization to
decrease the needed bounds was already used.
Henry A. Kautz, Bart Selman: Pushing the Envelope:
Planning, Propositional Logic and Stochastic Search.
AAAI/IAAI, Vol. 2 1996: 1194-1201.

A generalization of step executions, which allows a
set of actions S to be fired as a step if at least one
interleaving of S is executable is presented in:
Rintanen, J., Heljanko, K., and Niemelä, I.:
Planning as Satisfiability: Parallel Plans and Algorithms
for Plan Search Artificial Intelligence
170(12-13):1031-1080.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 52/54

http://citeseer.ist.psu.edu/kautz96pushing.html
http://dx.doi.org/10.1016/j.artint.2006.08.002

Other Semantics for BMC

Other new and efficient non-standard execution
semantics for BMC of asynchronous systems have
been presented in: Toni Jussila.
On bounded model checking of asynchronous
systems. Research Report A97, Helsinki University
of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, October 2005. Doctoral
dissertation.

Another interesting approach is: Shougo Ogata,
Tatsuhiro Tsuchiya, Tohru Kikuno:
SAT-Based Verification of Safe Petri Nets. ATVA
2004: 79-92, LNCS 3299.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 53/54

http://lib.tkk.fi/Diss/2005/isbn9512279045/
http://springerlink.metapress.com/openurl.asp?genre=article\&issn=0302-9743\&volume=3299\&spage=79

Conclusions of Tutorial part 1

Bounded model checking (BMC) is an efficient way
of implementing symbolic model checking
complementing other model checking methods.

It alleviates the state explosion by representing the
state space implicitly as a propositional formula.

It leverages efficient SAT-solver technology.

The choice between different transition relation
encodings has been often overlooked in BMC.

The performance differences between different
transition relation encodings are very significant for
asynchronous systems BMC.

Bounded Model Checking Tutorial, Part I, Keijo Heljanko – 54/54

	Co-Author of Slides
	Thanks to co-authors on BMC
	Software failures
	Price of Software Defects
	Pentium FDIV - Software bug in HW
	Ariane 5
	Model Checking
	Models and Properties
	Benefits of Model Checking
	Drawbacks of Model Checking
	Model Checking in the Industry
	Finite-State Model Checking Tools
	Bounded Model Checking
	Basics of Bounded Model Checking
	SAT
	SAT References
	Basic Setup
	A Simplifying Assumption
	Unrolling the Transition Relation
	Circuit BMC Unrolling
	Circuit BMC Unrolling Solution
	Expressing Invariants
	Final formula
	Reachability Diameter
	Unsatisfiable - Increase the bound
	BMC: Pros and Cons
	BDDs vs.{ }BMC on Hardware Designs
	Alternative Transition Relations
	Encoding the Transition Relation
	A Wish-List for Encodings
	Transition Relation Encoding
	Alternative Transition Relations
	Intuition: LTS Semantics
	Alternative Semantics
	LTSs: Running Example
	LTSs: Interleaving Semantics
	LTSs: Step Semantics
	Properties Steps Semantics
	Interleaving vs.{ }Steps
	Process Semantics
	LTSs: Process Semantics
	Properties of Processes
	Steps vs.{ }Processes
	Experiments: Different Semantics
	Symbolic Subset Construction
	LTSs: Determinised Interleaving
	LTSs: Determinised Step
	LTSs: Determinised Process
	On-the-fly Determinization Results
	Model Checking LTL-X
	Steps and AI Planning
	Other Semantics for BMC
	Conclusions of Tutorial part 1

