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Continuous-time Markov chain

A continuous-time Markov chain (CTMC) is a tuple (S, P, r, L) where:
e S IS a countable (today: finite) set of states

e P:S5Sx S5 —10,1], astochastic matrix

— P(s, s') is one-step probability of going from state s to state s’
— s is called absorbing iff P(s,s) =1

e r: S — Ry, the exit-rate function

— r(s) is the rate of exponential distribution of residence time in state s

© JPK 3



UNIVERSITEIT RWTH=:
TWENTE.

CTMC paths

e An infinite path ¢ ina CTMC C = (S, P, r, L) is of the form:

/ / '
O = Sg—2 5] —— 89 —2> S3

with s; iIs a state in S, t; € R+ is a duration, and P(s;, s;11) > 0.

e A Borel space on infinite paths exists (cylinder construction)

— reachability, timed reachability, and w-regular properties are measurable

e Let Paths(s) denote the set of infinite path starting in state s
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Reachability probabilities

o LetC = (5,P,r, L) be afinite CTMC and G C S a set of states

e Let OG be the set of infinite paths in C reaching a state in G

e Question: what is the probability of &G when starting from s?

— what is the probability mass of all infinite paths from s that eventually hit G?

e As state residence times are not relevant for &G, this is simple
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Probabilistic reachability

e Pr(s, OG) is the least solution of the set of linear equations:

1 ifs e G
Pr(s, OG) =
> veg P(s,s") - Pr(s’, 0G)  otherwise

e Unique solution by pre-computing Sat(vV<G) and Sat(3<¢G)

— this is a standard graph analysis (as in CTL model checking)

e This is the same as in Christel’s first lecture this morning
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Continuous stochastic logic (CSL)

e CSL equips the until-operator with a time interval:

— letinterval I C R with rational bounds, e.g., I = [0, 17]
— ® U’ asserts that a U-state can be reached via ®-states
.. . while reaching the ¥-state at sometime ¢t € I
e CSL contains a probabilistic operator IP with arguments
— a path formula, e.g., good U®'?lhad, and
— a probability interval J C [0, 1] with rational bounds, e.g., J = [0, 1]
e CSL contains a long-run operator I with arguments

— a state formula, e.g., a A bor P_,(<P), and
— a probability interval J C [0, 1] with rational bounds
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The branching-time logic CSL

e Fora € AP, J C [0, 1] and I C R intervals with rational bounds:

b i=a | =@ |[BAD | Ly(®) | Ps(p)

p = dUP | DU @

® soptpsitise... =@ U/ U if U isreached at t € I and prior to ¢, ® holds
® s |= P,;(y) if the probability of the set of -paths starting in s lies in J

o s =L ;(P) if starting from s, the probability of being in ® on the long run lies in J
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Derived operators

OP = truelU @

OSSP = true USH @

abbreviate Pjg o 51() by P<o.5(¢) and Pyg 17() by P~0(¢) and so on
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Timed reachability formulas
e In > 92% of the cases, a goal state is legally reached within 3.1 sec:

P- .92 (legal US"" goal)

e Almost surely stay in a legal state for at least 10 sec:

P_, (05" legal)

e Combining these two constraints:

]P)> 0.92 (Iegal U<3'1 P_q (Dglo Iegal))
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Long-run formulas

e The long-run probability of being in a safe state is at most 0.00001.:

L¢i0-5 (safe)

e On the long run, with at least “five nine” likelihood almost surely a
goal state can be reached within one sec.:

L0.99999 (P=1(<¢<'goal))

e The probability to reach a state that in the long run guarantees more
than five-nine safety exceeds i:

P~0.5 (O Lxo.99990(Safe))
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CSL semantics

C,s = @ if and only if formula ® holds in state s of CTMC C

s E=a iff a e L(s)

skE P iff not (s = )

sEPAV  iff (sE®)and (s = V)

sELy(®) iff limy o Pr{o € Paths(s) |c@t =d}c J
sE=Py(p) iff Pr{oePaths(s)|cE=p}eJ

cE®U U iffdte . (V' €[0,t).0Qt = P) A c@Qt = U)

where 0@t is the state along o that is occupied at time ¢
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CSL model checking
e LetC be a finite CTMC and ¢ a CSL formula.

o determine the states in C satisfying ®
e Determine Sat(®) by a recursive descent over parse tree of ®

e For the propositional fragment (—, A, a): do as for CTL

e How to check formulas of the form P ;()?

—  is an until-formula: do as for PCTL, i.e., linear equation system
— (IS a time-bounded until-formula: integral equation system

e How to check formulas of the form L ;(W)?

— graph analysis + solving linear equation system(s)
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Model-checking the long-run operator
e Fora CTMC:
s e Sat(L;(®)) iff Z p(s) e J
s’eSat(d)

— this boils down to a standard steady-state analysis

e FOr an CTMC:

— determine the bottom strongly-connected components (BSCCs)
— for BSCC B determine the steady-state probability of a $-state
— compute the probability to reach BSCC B from state s

s € Sat(L,(®)) iff Y |Pr{sEoB}. >  pi(s)| eJ

s'e znSat(e)
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Verifying long-run properties: an example

. e > -

1 3 1 2

(@ ®

determine the bottom strongly-connected components
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Verifying long-run properties: an example

. 0

@ O

s = L,g(magenta) iff  Pr{s = Catyeion} . pyellow (magenta)

+ Pr{s = Catye} - p*¢(magenta) > 3
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Verifying long-run properties: an example

1
@CO 3
6
3
s = Log(magenta) iff  Pr{s F Catyeuon} - pye”ow(magenta)

=1
+ Pr{s = Catpue} .?bl“e(magental > 5

V)
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Verifying long-run properties: an example

. e
@ O

= ]L>%(magenta) Iff Pr{s = $atyeiion ) + %PI'{S = Catprue} > %
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Verifying long-run properties: an example

1

s = Los(magenta) iff  Pr{s = Oatyeon} + 2Pr{s = Oatpuc} > 3

PI‘{S ’: Oatyellow} = % + %PT{S/ ): <>atyellow}
PI‘{S/ ’: Qatyellow} = %PI‘{S ’: <>a/tyellow}
o k
= Pr{s E Catyeuon} = %Zkzo (i) = %
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Verifying long-run properties: an example

. 0

@ O

s | Loa(magenta) iff  Pr{s = Gatyenon} + 2 Pr{s = Catyiue} > 3

oy =)

2
3
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Verifying long-run properties: an example

s = L>%(magenta) Iff

wIiN
_|_
Wb
o] I
V
=~
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Verifying long-run properties: an example

3
2 21 3
Thus: s = L_s(magenta) as o
1 S 36 4
7
9
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Time-bounded reachability
e sEP,;(2U'T) ifandonlyif Pr{sEoU/¥}ecJ

e For I =[0,t], Pr{s &= ® US*¥} is the least solution of:
— 1if s € Sat(V)

— if s € Sat(®) — Sat(V):

t
/ Z R(s,s’) - e_r(s)”i - Pr{s’ EQUS"TTU}  da
0 ' '

s'€s probability to move to  probability to fulfill ® U &

state s’ at time x before time t—x from s’

— 0 otherwise
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Reduction to transient analysis

e For an arbitrary CTMC C and property ¢ = ® US* & we have:

—  Is fulfilled once a W-state is reached before t along a ®-path
— @ isviolated once a — (® Vv W)-state is visited before ¢

e This suggests to the CTMC C as follows:

— make all U-states and all = (® Vv W)-states absorbing

() S |: PJ((I) Ugt \IJZ Iff s ): PJ( \If)j
inC in ¢’
e Then it follows: s =¢/ Py (O iff Z pe(t)  €J

transient probs in C’
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Example: TMR with P(( Vv blue) U3l red)

e

/ \ transformation

recursive computation
—
like PCTL
bounded until

uniformisation

© JPK 26



UNIVERSITEIT RWTH=:
TWENTE.

Interval-bounded reachability

e For any path o that fulfills ® UlHtT U with 0 < ¢ < #';

— & holds continuously up to time ¢, and
/
— the suffix of & starting at time ¢ fulfills ® UI%* ~1 ¥

e Approach: divide the problem into two:

ZPCISS t)- chns s t'—t)

/|_ // I_
J/ J/

check D[O’t] P check ® U[O,t —t] @

/

with starting distribution pc (t)

— where CTMC C’ equals C with all ®-states absorbing
— and CTMC C"” equals C with all ¥ and — (¢ Vv ¥)-states absorbing

© JPK 27
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Verification times

verification time (in ms)

Wl ctati 1 (CTAC) —
WOTKSUAUIOTT Cruster (CTIviC) [I—
I
]
= e
S |
4 — 1 CTAMO) — _—0
10 { | TTUCTIT ucuc | VI ———
vd 1 —
—
B —
Crowds prot (@)
/, -~ — /J’ Dﬂe"ﬁ 4
" g
O/ / r,/// /// l - I
/ >l E——— Randomised mutex (DTMC)
|
|
3 / y |
10"/ iy
/ . A 4
O o/
|
L1/
102 /
state space size
10"
o Te] «© © © ©
o o o o o
o - H & H
- (8}

command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop
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Reachability probabilities

Nondeterminism
no

Nondeterminism
yes

Reachability

linear equation system
DTMC

linear programming
MDP

Timed reachability

transient analysis

CTMC

discretisation
+ linear programming
CTMDP
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Summary of CSL model checking

e Recursive descent over the parse tree of
e Long-run operator: graph analysis + linear system(s) of equations

e Time-bounded until: CTMC transformation and uniformization

e Worst case time-complexity: O(|®| (| R |-r-t., + | S |*51))
with |®| the length of &, uniformization rate r, t,,,, the largest time bound in &
e Tools:

PRISM (symbolic), MRMC (explicit state), YMER (simulation), VESTA (simulation), . . .

© JPK 30
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Probabilistic bisimulation

e Traditional LTL/CTL model checking:

(Fisler & Vardi, 1998)

— significant reductions in state space (upto logarithmic)
— cost of bisimulation minimisation significantly exceeds model checking time

e Pros:

— fully automated and efficient abstraction technique
— enables compositional minimization

e Our Interest:

does bisimulation minimization as pre-computation step
of probabilistic model checking pay off?
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Probabilistic bisimulation

e LetC = (5,P,r, L) be a CTMC and R an equivalence relation on S

e Ris a probabilistic bisimulation on S'if for any (s, s’) € R it holds:

1. L(s) = L(s')
2. r(s) =r(s")

3. P(s,C)=P(s',C) forall C € S/R, where P(s,C) =>_ _~P(s,u)

ueC

Note that the last two conditions together equal R(s, C) = R(s', C).

e States s and s’ are bisimilar, denoted s ~ s/, If;

1 a probabilistic bisimulation R on S with (s,s") € R

© JPK 33
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Example

for simplicity, all states have the same exit rate (= uniform CTMC)
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Quotient Markov chain
For C = (S, R, L) and probabilistic bisimulation ~ C S x S let

C/~= (S ,R/,L"), the quotient of C under ~
where
o '=5/~= {[s]o]|seS}twith[s]. = {s'e€S5|s~s"}
e R': 5" x5 —|0,1] is defined such that for each s € S and C € §:

R'([s]~,C) = R(s,C)

it follows thatC ~ C/ ~

© JPK 35
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Modelling a TMR system as a CTMC

e processor failure rate is X fph;
its repair rate is p rph

ups 3\ up2
e voter failure rate is v fph;
3,1 2 2,1 . . .
its repair rate is é rph

2\ e rate matrix: e.g.,, R((3,1),(2,1)) = 3\

v
(
V/ \ . | _
H ( e exitrates: e.g., r((3,1)) = 3A4v
A

upo up; e probability matrix: e.g.,
3A
P((3,1),(2,1)) = ——
((3,1), 2, 1)) = o5

© JPK 36
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A bisimilar TMR model

@0
@ @

@-—@3 \ / e

R'([s]

~m

C)=R(s,C) =) . .cR(s,5)

© JPK
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Preservation of state probabilities

o LetC = (S,R, L) be a CTMC with initial distribution p(0)

e Forany C € Sy/~ we have:

P.(t) = Z p (t) foranyt>0
seC

e If the steady-state distribution exists, then it follows:

/A / 1 _
Yo = Jmpo®) = tm D, p) = 2 v,
S S

© JPK
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Logical characterization

For any finite CTMC with states s and s’:

s~s & (VPecsL:sE®ifandonlyifs’ = o)

The quotient under the coarsest bisimulation can be obtained by
partition-refinement in time-complexity O (|R/|- log | S|)

© JPK
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Craps

e Roll two dice and bet on outcome

e Come-out roll (“pass line” wager):

— outcome 7 or 11: win
— outcome 2, 3, and 12: loss (“craps”)
— any other outcome: roll again (outcome is “point”)

e Repeat until 7 or the “point” is thrown:

— outcome 7: loss (“seven-out”)
— outcome the point: win
— any other outcome: roll again

© JPK 40
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A DTMC model of Craps

e Come-out roll:

|
()

|

Nl V)

— 70r11: win
— 2,3,0r12: loss
— else: roll again

9

e Next roll(s):
— 7:loss
— point: win
— else: roll again

© JPK 41
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Minimizing Craps

o]\

3 3 13
1
9

1
12

DN

initial partitioning for the atomic propositions AP = { loss }

© JPK
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A first refinement

refine (“split”) with respect to the set of red states

© JPK
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A second refinement

refine (“split”) with respect to the set of green states
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Quotient DTMC
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IEEE 802.11 group communication protocol

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks | lump + ver. time | states | time

4 1125 5369 121.9 71 13.5 15.9 | 9.00
12 37349 236313 7180 1821 642 205 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 | 2076773 | 15187833 | 5103900 91391 77694 22.7 6.6
40 | 3101445 | 22871849 | 7725041 135752 127489 22.9 6.1

all verification times concern timed reachability properties

© JPK
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BitTorrent-like P2P protocol

symmetry reduction

original CTMC reduced CTMC red. factor
N states ver. time | states | red.time | ver.time | states time
2 1024 5.6 528 12 2.9 1.93 0.38
3 32768 410 5984 100 59 5.48 2.58
4 1048576 22000 52360 360 820 20.0 18.3

bisimulation minimisation

original CTMC lumped CTMC red. factor
N states ver. time | blocks | lumptime | ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3
3 32768 410 252 170 1.3 130 2.4
4 1048576 22000 792 10200 4.8 | 1324 2.2

bisimulation may reduce a factor 66 after (manual) symmetry reduction

© JPK
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Power consumption in mobile ad-hoc networks

e Single battery-powered mobile phone with ad-hoc traffic

e Two types of traffic: ad-hoc traffic and ordinary calls

— offer transmission capabilities for data transfer between third parties (altruism)
— normal call traffic

e Prices are used to model power consumption

— in doze mode (20 mA), calls can neither be made nor received

— active calls are assumed to consume 200 mA

— ad-hoc traffic and call handling takes 120 mA,; idle mode costs 50 mA
— total battery capacity is 750 mAh; price equals one mA
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call_active
accept connect
150 mA — 150 mA transition mear_l time rate
call_incoming call_initiated (In mln) (per h)
. r accept 20 180
T - s T connect 10 360
fing. - SR . faunch disconnect 4 15
T 50 mA T doze 5 12
call_idle give Up 1 60
2_0 mA\ interrupt 1 60
launch 80 0.75
to-doze . I wake up reconfirm 4 15
request 10 6
ring 80 0.75
wake up 16 3.75

adhoc_idle l

I request
150 mA

adhoc_active

reconfirm

© JPK
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Required properties

e The probability to receive a call within 24 hours exceeds 0.23

e The probability to receive a call while having consumed at most 80%
power exceeds 0.99

e The probability to launch a call before consuming at most 80% power
within 24 hours — while using the phone only for ad-hoc transfer
beforehand — exceeds 0.78

© JPK 51
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Priced continuous-time Markov chains

A CMRM is atriple (S, R, L, p) where:

e S is a set of states, R a rate matrix and L a labelling (as before)
e p: S — IR IS a price function

Interpretation:

e Staying t time units in state s costs p(s)-t

© JPK
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- — — — state change

time
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Time- and cost-bounded reachability

e In > 92% of the cases, a goal state is reached with cost at most 62:

P> 0.92 (—| |Ilegal U<62 goal)

o ...... within 133.4 time units: P=o0.092 (—illegal U goal)

e Possible to put constraints on:

— the likelihood with which certain behaviours occur,
— the time frame in which certain events should happen, and
— the prices (or: rewards) that are allowed to be made.

© JPK 54
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Checking time- and cost-bounded reachability

e sEP(PULT) ifandonlyif Pr{sE=®U,¥}eL

e For I =[0,t]and J = [0, 7], Pr{s = ® US. W} is the least solution of:

<r

—1ifsEU
— if s |=® and s = U:

/ Z R(s,s")-e "% . Pr{s' = ® Uif:z(s)_x U} dx
K(s) s'es

where K(s) = {x € I | p(s) -x € J } is subset of I whose price liesin J

— 0 otherwise

© JPK
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Duality: model transformation

e Key concept: exploit duality of time advancing and price increase

e The dual of an MRM C with p(s) > 0 into MRM C*:

R*(s,s’) = and p*(s) = —

state space S and the state-labelling L in C are unaffected

e SO, accelerate state s if p(s) < 1 and slow it down if p(s) > 1

© JPK
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Duality theorem

e Transform any state-formula by swapping price and time bounds:

(U} ¥)x = o* Uy U~

. sEPL (PUS0) iff spPy (9"U7 UF)

inC in?*

= | Verifying U (in C) is identical to model-checking U’ (in C*)

© JPK
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Proof sketch

Prex(s |= Oif G)
= (*fors g G?

* / —r*(s)-x I ASCOT
/K* Z R (s,s)-e : Pc’*r (s = O Stop*(s)a G) dx

s'es
= (* substitutingy = G *)
[RGB (o 0 6) ay
K s'es <

— (* C and C* have same digraph, equation system has unique solution *)

/ —7(s)- I <cOp(s)-
[ RGO (o 2 06 dy

s'es

= (Fs¢G)
Prex (s = 022 G)

© JPK 58
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Reduction to transient rate probabilities

Consider the formula ® US! ¥ on MRM C

e Approach: transform the MRM C as follows

— make all U-states and all = (¢ Vv W)-states absorbing
— equip all these absorbing states with price O

. SEP(OUSLY) it s =Py (020 W)
in MRM C in MRM ¢’

e This amounts to compute the transient rate distribution in C’

= Algorithms to compute this measure are not widespread!

© JPK
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A discretization approach

e Discretise both time and accumulated price as (small) d

— probability of > 1 transition in d time-units is negligible (Tijms & Veldman 2000)

c/d

o Pr(s = <>[<t’ct] V) =~ Z ZFt/d(s’,k)-d

s/ =0 k=1

e Initialization: F''(s, k) = 1/d if (s, k) = (s0, p(s0)), and O otherwise

o FITl(s,k)=F(s,k—p(s))-(1—r(s)-d) + S: FI(s' k—p(s")-R(s, 5)-d

Ve

be in state s at epoch j s'esS be in s" at epoch j

e Time complexity: O(| S| - t? - d2) (for all states)
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Discretization

computation time (in s)
10000 I I

| I
9000 F error bound: 10_347 | At

4

8000 |- 10 __.-4; .
7000 Ry -
6000 - ot i
5000 + e -
4000 - o -
3000 |- 4o .
2000 |- o .
1000 + + -

0 | | | | | | ] | |
0 10 20 30 40 50 60 70 80 90

time bound t

about 300 states: error bound not known
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computation time (in s)
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© JPK

62



UNIVERSITEIT
TWENTE.

Perspectives

e Linear real-time specifications (MTL, timed automata)
e Aggressive abstraction techniques

e Counterexample generation

e Continuous-time Markov decision processes

e Parametric model checking

¢ Infinite-state model checking
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e

CTMC model checking

IS a mature automated technique

has a broad range of applications

IS supported by powerful software tools
extendible to prices

supported by aggressive abstraction

more information: WWW. NT nc-t ool . org
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e CTMC model checking

— CSL: [Baier, Haverkort, Hermanns & Katoen, IEEE Trans. Softw. Eng., 2003]
— linear timed specifications: [Chen, Han, Katoen & Mereacre, LICS 2009]

e Bisimulation minimization

— [Derisavi, Hermanns & Sanders, IPL 2005], [Valmari & Franceschinis, TACAS 2010]
— [Katoen, Kemna, Zapreev & Jansen, TACAS 2007]

e Priced continuous-time Markov chain model checking

— [Baier, Haverkort, Hermanns & Katoen, ICALP 2000]
— [Baier, Cloth, Haverkort, Hermanns & Katoen, DSN 2005/FMSD 2010]

e CTMC abstraction

— 3-valued abstraction: [Katoen, Klink, Leucker & Wolf, CONCUR 2008]
— compositional abstraction: [Katoen, Klink and Neuhausser, FORMATS 2009]
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