UPPAAL 4.0.8 Engine & Formalism

Kim G. Larsen

Outline

- UPPAAL Models
 & Specifications
- UPPAAL Engine
 - Zones, CDDs
- UPPAAL Options
- LAB Exercises

UPPAAL

Modeling & Specification

Train Crossing

Train Crossing

Declarations

Q

🚔 C:/Documents and Settings/	Kim/Desktop/uppaal-3.4.7/demo/train-gate.xml - UPPAAL					
File Templates View Queries Options Help						
🕼 📾 🔳 🔍 @	z e 🕟 🔍 🛥 🔈					
System Editor Simulator Verifier						
Drag out /* Itain-gate * For more details about this example, see Itain-gate * Watomatic Verification of Real-Time Communicating Systems by Constraint Solving", Itain * Watomatic Verification of Real-Time Communicating Systems by Constraint Solving", Itain * Watomatic Verification of Real-Time Communicating Systems by Constraint Solving", Itain * Watomatic Verification of Real-Time Communicating Systems by Constraint Solving", Itain * Onference on Formal Description Techniques, pages 223-238, North-Holland. 1994. */ */						
System definition	<pre>const N 5; // # trains + 1 int[0,N] el; chan appr, stop, go, leave; chan empty, notempty, hd, add, rem;</pre>	Constants Bounded integers				
train-gate Global declarations Declarations	clock x;	Channels Clocks				
train-gate Global declarations ⊡ 3 Train Declarations ⊡ 3 Gate ⊡ 3 IntQueue Declarations	<pre>int[0,N] list[N], len, i;</pre>	Types Functions				
Process assignments System definition	<pre>Train1:=Train(el, 1); Train2:=Train(el, 2); Train3:=Train(el, 3); Train4:=Train(el, 4);</pre>	Processes Systems				
MC, PhD Rogess assignmentsh 3,	system Trainl, Train2, Train3, Train4, 2010 Gate, Queue; 6	5				

UPPAAL Help

Logical Specifications

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] P
 - Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{\leq t} Q$

The expressions *P* and *Q* must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, are allowed (and arrays of these).

UPPAAL

ENGINE

Regions – From Infinite to Finite

The number of regions is $n! \cdot 2^n \cdot \prod_{x \in C} (2c_x + 2)$.

QMC, PhD School, March 3, 2010

Kim Larsen [10]

Zones – From Finite to Efficiency

QMC, PhD School, March 3, 2010

Zones – Operations

15 🕒 🖢 🖢

19 🕒 🖢 🖢

Datastructures for Zones

- Difference Bounded Matrices (DBMs)
- Minimal Constraint Form [RTSS97]

 Clock Difference Diagrams [CAV99]

QMC, PhD School, March 3, 2010

Inclusion Checking (DBMs)

Bellman 1958, Dill 1989

Future (DBMs)

Reset (DBMs)

UPPAAL

Verification Options

Verification Options

♣ C:/Documents and Settings/kgl/Desktop/KIM/UPPAAL/UPPA.						
File Edit View Tools	Options	Help				
	Search	n Order	•			
	State	Space Reduction	•			
Editor Simulator Verifier	State Space Representation		×			
Q	Diagnostic Trace		•			
Overview	Extrapolation		•			
A[] (RobotA.a <=	Hash table size		•			
E[] ((bodenA ==	✔ Reuse			bodenC =		
$E \ll ((bodenA > 5) (bodenB > 5) (bodenC > 5)$						
E<> not deadlock						

Search Order Depth First Breadth First State Space Reduction None Conservative Aggressive **State Space Representation** DBM **Compact Form Under Approximation Over Approximation Diagnostic Trace** Some Shortest Fastest

Extrapolation Hash Table size

Reuse

27

State Space Reduction

No Cycles: Passed list not needed for termination

28

S

State Space Reduction

Cycles:

Only symbolic states involving loop-entry points need to be saved on Passed list

29

S

Over/Under Approximation

Declared State Space

 $\begin{array}{l} G {\in U} \ \Rightarrow G {\in R} \\ \neg (G {\in O}) \Rightarrow \neg (G {\in R}) \end{array}$

31

Over-approximation Convex Hull

TACAS04: An EXACT method performing as well as Convex Hull has been developed based on abstractions taking max constants into account distinguishing between clocks, locations and $\leq \& \geq$

Under-approximation *Bitstate Hashing*

QMC, PhD School, March 3, 2010

Under-approximation Bitstate Hashing

LAB-Exercises

http://www.cs.aau.dk/~kgl/QMC2010/exercises/

OF NMART

Exercise 19 Exercise 2 Exercise 1

QMC, PhD School, March 3, 2010

Kim Larsen [35]