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Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | oo A ¢ |Ep|AY
Ppr=XplpUgp

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).
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Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp
CTL2 =0 | ~p|e A ¢|Ep|AY
Y=g | XpleUgp

Example

o (OUO) Vv GO: weak until
e GFO: “infinitely often”

e AG(O = AFQ): response property
o A(GFO = GQ): fair runs are safe  (not a CTL formula)

v

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).
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Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOE'OE'OE'OO—KOE' = G C= - (F7 -0O)

@ using formula clocks
% 15 : 1.8 : 3.60

x<5
x:=0 N ): F(O VAN X.G(X <5 = = ))
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Timed logics in the pointwise framework
Definition
MTL2 ¢ :=O | -ple Ve lpUp

where O ranges over {O, O, ...} and / is an interval with bounds
in QT U {+oc}.
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Timed logics in the pointwise framework
Definition
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where O ranges over {O, O, ...}, x ranges over a set of formula
clocks, c € QT and ~ € {<, <, =,>,>}.
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Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
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Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

- uel
o m,t=p iff pemn(t)

Example
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Definition

Continuous semantics of TPTL: over 7: R — {O, O, ...}:
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Relative expressiveness of TPTL and MTL

Lemma
MTL can be translated into TPTL.

Proof.
U = x.pU@W A xel).

Conversely, consider the following TPTL formula:
GO = x.F(O A F(O A x<2))].

It characterizes the following pattern:

0 1 2
[ % '
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G[O = x.F(O A F(O A x <2))].
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Relative expressiveness of TPTL and MTL

G[O = x.F(O A F(O A x <2))].

FogO A FigO
¢ O= Fo11(O A FoyO)

Fio.1)(Fo1) O A F_y O)

Remark
This translation is only valid in the continuous semantics
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Theorem
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Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).



Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Proof.
@ In the pointwise semantics:
G[O = x.F(O A F(O A x <2))]

cannot be expressed in MTL.

@ In both semantics:
p=x. FOAXx<1AG(Kx<1= -Q))

cannot be expressed in MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).
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MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).
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MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine J

N a\\\\
o To [N« ] [o T [l

tape head tape head

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).




MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the

continuous semantics.

Proof.
Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

J

ﬁ
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Il
—
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Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).



MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine J
n n+1 n+2
--—t . .

+

G[(OA-(OQUO)A = ((-O A -0O)Uu ) & F_1 O] g

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).
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Remark

This reduction requires continuous semantics, or the use of
past-time modalities:

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).
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MTL model-checking

Remark

This reduction requires continuous semantics, or the use of
past-time modalities:

t

e H ”
Insertion errors

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).



MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

— f f :

e - ”
Insertion errors

Theorem
Under pointwise semantics, MTL model-checking and satisfiability
@ are undecidable over infinite timed words;

@ are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).
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MITL o= QO | ~p|leVelpU g

where () ranges over {0,0, ...} and [ is a non-punctual interval
with bounds in Q" U {+o0}.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).
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Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL o= QO | ~p|leVelpU g

where () ranges over {0,0, ...} and [ is a non-punctual interval
with bounds in Q" U {+o0}.

Example
e GO = Fi2 O) is an MITL formula;
e G(O = F_; Q) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).



(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

where
e O ranges over {0,0, b
@ [ ranges over bounded intervals with bounds in Q,
@ J ranges over intervals with bounds in Q U {+o0}, and

@ 1) ranges over MITL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).



(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).



(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Example

o G(O = F_; Q) is in CoFlatMTL.
o F(O A G_; Q) is in FlatMTL, but not in CoFlatMTL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).



(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Theorem

CoFlatMTL model-checking is EXPSPACE-complete.
CoFlatMTL satisfiability is undecidable.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).
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Branching-time logics with timing constraints — syntax
Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Example

o AG(O = EF50)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).



Branching-time logics with timing constraints — syntax
Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Example

o AG(O = EF50)
o AF(AG Q)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).



Branching-time logics with timing constraints — semantics

Definition

The semantics of TCTL is defined as follows: let () be a location
and v be a clock valuation.

o O,vE=E(O U Q) iff there is a run from (O, v) such
that
® 11
: —

~ C

o O,vEAO U O) is defined similarly.




Branching-time logics with timing constraints — semantics

Definition

The semantics of TCTL is defined as follows: let () be a location
and v be a clock valuation.

o O,vE=E(O U Q) iff there is a run from (O, v) such
that
® 11
: — 1)

~ C

o O,vEAO U O) is defined similarly.

Remark
We could also define a pointwise semantics:

delay = ¢ ' delay = ¢’
@ Y @ action @ Y T




Branching-time logics with timing constraints — semantics

Example
0 O,(;%7) FEO U O

»O,(;%7) A6 -0




Branching-time logics with timing constraints — semantics

Example
0 O,(;%7) FEO U O

°O,(;3i) EAG-O

°O< )):E(EF—lo U_; O




TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
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OyveEe & O,VE®@

Proof.

By induction on ¢.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Proof.

By induction on ¢.

Theorem
TCTL model-checking is PSPACE-complete.
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TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Proof.
By induction on ¢. O

Theorem
TCTL model-checking is PSPACE-complete.

Proof.
Space-efficient CTL labelling algorithm on the region graph. Ol

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Conclusions and perspectives

Real-time temporal logics have been much studied:

@ linear-time:
e natural extensions of LTL are undecidable;
e several restrictions lead to decidability;
e however, model-checking linear-time logics is hard;
e no implementation exists.
@ branching-time:

o TCTL model-checking is in PSPACE;
e can be made efficient in practice;
o implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
@ symbolic algorithms for linear-time temporal logics;

@ robust model-checking.
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