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Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬ )

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).
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Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬ )

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F( ∧ x .G(x ≤ 5 ⇒ ¬ ))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).
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Timed logics in the pointwise framework

Definition

MTL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is an interval with bounds
in Q+ ∪ {+∞}.
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π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.
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Timed logics in the pointwise framework

Definition

TPTL 3 ϕ ::= | x ∼ c | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | x . ϕ

where ranges over { , , ...}, x ranges over a set of formula
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Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
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Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)
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π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.
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Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Example
0 1 2 x .F( ∧ F( ∧ x ≤ 2))
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MTL can be translated into TPTL.

Proof.

ϕ UI ψ ≡ x . ϕ U (ψ ∧ x ∈ I).
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MTL can be translated into TPTL.

Proof.

ϕ UI ψ ≡ x . ϕ U (ψ ∧ x ∈ I).

Conversely, consider the following TPTL formula:

G
[
⇒ x .F( ∧ F( ∧ x ≤ 2))

]
.

It characterizes the following pattern:
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Relative expressiveness of TPTL and MTL

G
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⇒ x .F( ∧ F( ∧ x ≤ 2))

]
.

green

0 1 2

G ⇒
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F[0,1] ∧ F[1,2]

∨
F[0,1]( ∧ F[0,1] )

∨
F[0,1](F(0,1) ∧ F=1 )

Remark
This translation is only valid in the continuous semantics
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Theorem
TPTL is strictly more expressive than MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).



Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Proof.

In the pointwise semantics:

G
[
⇒ x .F( ∧ F( ∧ x ≤ 2))

]
cannot be expressed in MTL.

In both semantics:

ϕ = x . F( ∧ x ≤ 1 ∧ G(x ≤ 1 ⇒ ¬ ))

cannot be expressed in MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).
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MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).
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MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

n n+1 n+2

=1

=1 “insertion errors”

Theorem
Under pointwise semantics, MTL model-checking and satisfiability

are undecidable over infinite timed words;
are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).
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Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is a non-punctual interval
with bounds in Q+ ∪ {+∞}.

Example

G( ⇒ F[1,2] ) is an MITL formula;

G( ⇒ F=1 ) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).
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(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

where
ranges over { , , ...},

I ranges over bounded intervals with bounds in Q,
J ranges over intervals with bounds in Q ∪ {+∞}, and
ψ ranges over MITL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).
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Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

Remark
CoFlatMTL is not closed under negation.

Example

G( ⇒ F=1 ) is in CoFlatMTL.

F( ∧ G=1 ) is in FlatMTL, but not in CoFlatMTL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).



(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

Remark
CoFlatMTL is not closed under negation.

Theorem
CoFlatMTL model-checking is EXPSPACE-complete.
CoFlatMTL satisfiability is undecidable.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).
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Branching-time logics with timing constraints – syntax

Definition

TCTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eϕ U∼c ϕ | Aϕ U∼c ϕ

where ∈ { , , , ...}, ∼ ∈ {≤, <,=, >,≥} and c ∈ N.

Example

A G( ⇒ E F≤5 )

A F(A G≤5 )

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Branching-time logics with timing constraints – semantics

Definition
The semantics of TCTL is defined as follows: let be a location
and v be a clock valuation.

, v |= E( U∼c ) iff there is a run from ( , v) such
that

v v’
∼ c

, v |= A( U∼c ) is defined similarly.

Remark
We could also define a pointwise semantics:

v v+c v ′ v ′+c′
delay = c action delay = c ′
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Example
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TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Proof.

By induction on ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Proof.

Space-efficient CTL labelling algorithm on the region graph.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).
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Conclusions and perspectives
Real-time temporal logics have been much studied:

linear-time:
natural extensions of LTL are undecidable;
several restrictions lead to decidability;
however, model-checking linear-time logics is hard;
no implementation exists.

branching-time:
TCTL model-checking is in PSPACE;
can be made efficient in practice;
implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
symbolic algorithms for linear-time temporal logics;
robust model-checking.
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