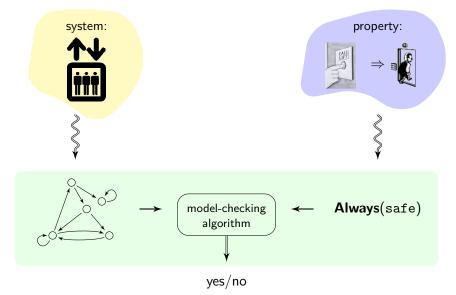
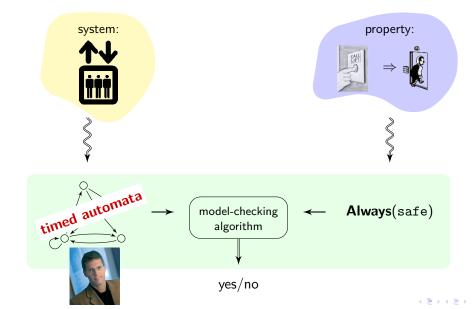
Real-time Model Checking — Timed Temporal Logics —

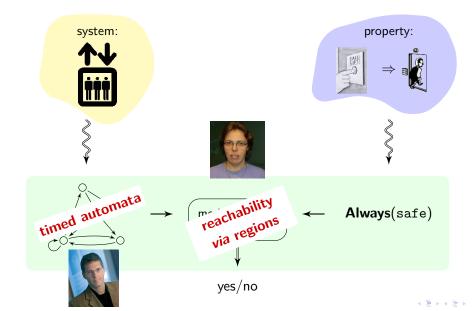
Nicolas MARKEY

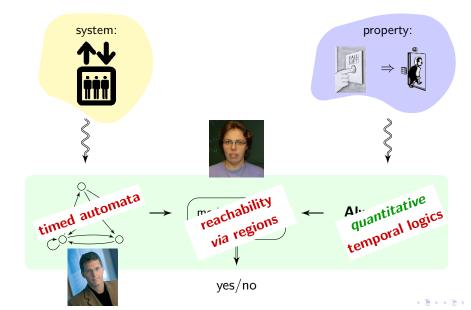
Lav. Spécification & Vérification CNRS & ENS Cachan – France

March 3, 2010









$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚊 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

 $\rightarrow \bigcirc \rightarrow \bigcirc - \models x \bigcirc$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🛛 🗧 🕨 🗸 🚍 🕨

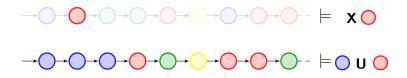
$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

$$\rightarrow \bigcirc \rightarrow \bigcirc - = \models x \bigcirc$$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🛛 🗧 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$



Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

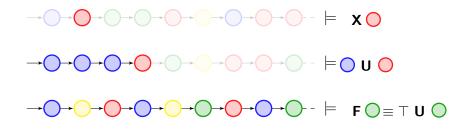
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚎 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚎 🕨 🗸 🚍 🕨

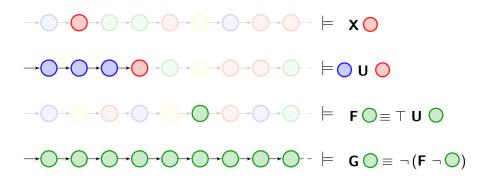
$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$



Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🛛 🗧 🕨 🗸 🚍 🕨

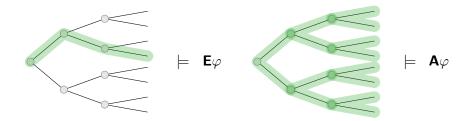
$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$



Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚊 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$



Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚊 🛌

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🛛 🛛 🚊 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Example

- (\bigcirc U \bigcirc) \lor G \bigcirc : weak until
- **G F** : "infinitely often"

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🗤 🗧 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc |\neg \varphi| \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc |\neg \varphi| \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Example (○ U ○) ∨ G ○: weak until G F ○: "infinitely often" A G(○ ⇒ A F ○): response property

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🛛 🛛 🚊 🕨 🗸 🚍 🕨

$$LTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$
$$CTL \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathbf{E} \psi | \mathbf{A} \psi$$
$$\psi ::= \varphi | \mathbf{X} \varphi | \varphi \mathbf{U} \varphi$$

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).

[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982). 🕢 🚊 🕨 🗸 🚍 🕨

Outline of the talk

Extending temporal logics with real-time constraints

- Continuous and pointwise semantics
- Expressiveness issues
- 3 Model checking timed linear-time logics
 - Undecidability of MTL and TPTL
 - Decidable fragments
- 4 Model checking timed branching-time logics

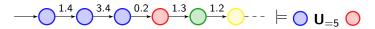
Outline of the talk

Introduction

Extending temporal logics with real-time constraints

- Continuous and pointwise semantics
- Expressiveness issues
- Model checking timed linear-time logics
 Undecidability of MTL and TPTL
 Decidable fragments
- 4 Model checking timed branching-time logics
- 5 Conclusions and open problems

• decorating modalities with timing constraints:

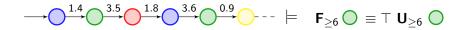


Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:

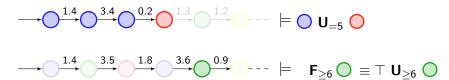
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:



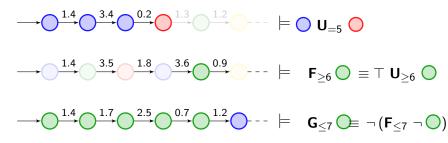
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:



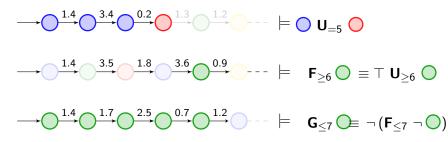
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:



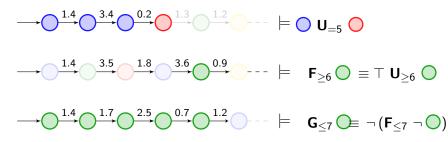
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:



Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

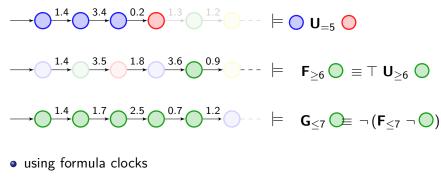
• decorating modalities with timing constraints:



using formula clocks

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

• decorating modalities with timing constraints:

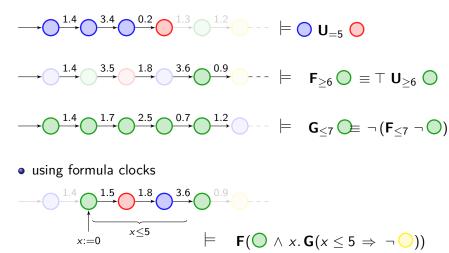


 $\longrightarrow \bigcirc \overset{1.4}{\longrightarrow} \bigcirc \overset{1.5}{\longrightarrow} \bigcirc \overset{1.8}{\longrightarrow} \bigcirc \overset{3.6}{\longrightarrow} \bigcirc \overset{0.9}{\longrightarrow} - -$

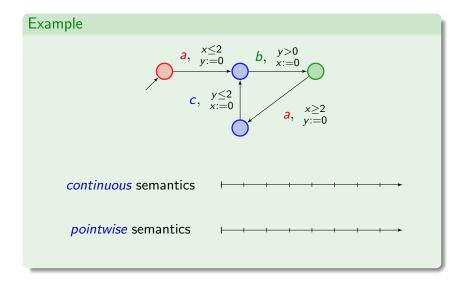
 $\models \mathbf{F}(\bigcirc \land x. \mathbf{G}(x \leq 5 \Rightarrow \neg \bigcirc))$

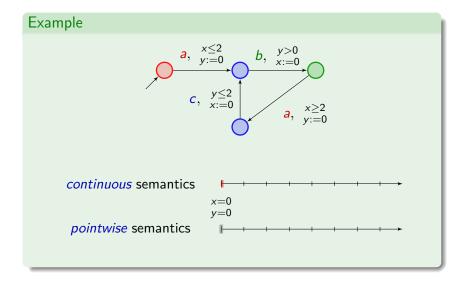
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

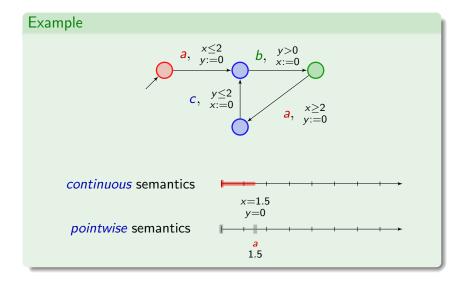
• decorating modalities with timing constraints:

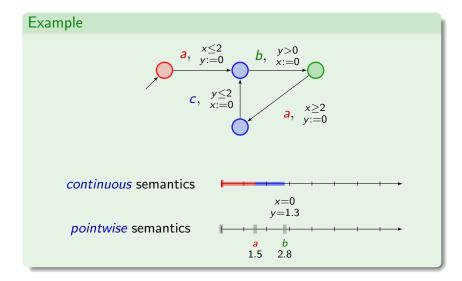


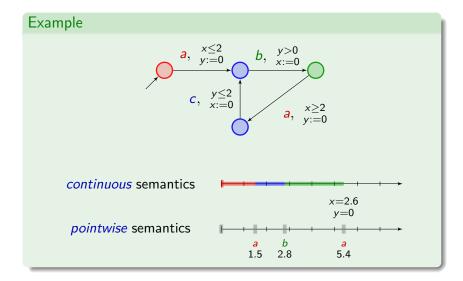
Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).

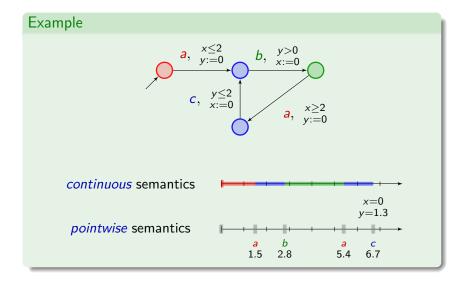












Timed logics in the pointwise framework

Definition

$$\mathsf{MTL} \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \lor \varphi | \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$ and I is an interval with bounds in $\mathbb{Q}^+ \cup \{+\infty\}$.

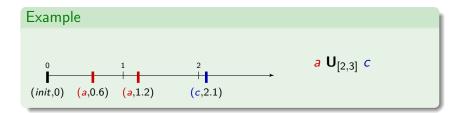
Timed logics in the pointwise framework

Definition

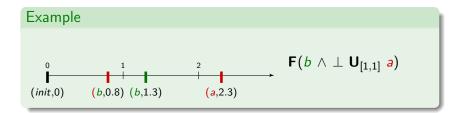
Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$:

•
$$\pi, i \models \varphi \mathbf{U}_{\mathbf{I}} \psi$$
 iff there exists some $j > 0$ s.t.
- $\pi, i + j \models \psi$,
- $\pi, i + k \models \varphi$ for all $0 < k < j$,
- $\mathbf{t}_{i+i} - \mathbf{t}_i \in \mathbf{I}$.

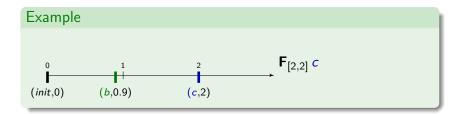
Definition Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$: • $\pi, i \models \varphi \ \mathbf{U}_I \ \psi$ iff there exists some j > 0 s.t. - $\pi, i + j \models \psi$, - $\pi, i + k \models \varphi$ for all 0 < k < j, - $t_{i+i} - t_i \in I$.



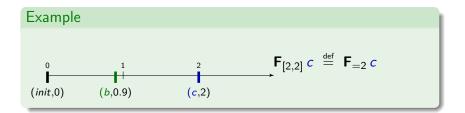
Definition Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$: • $\pi, i \models \varphi \ \mathbf{U}_I \ \psi$ iff there exists some j > 0 s.t. - $\pi, i + j \models \psi$, - $\pi, i + k \models \varphi$ for all 0 < k < j, - $t_{i+i} - t_i \in I$.



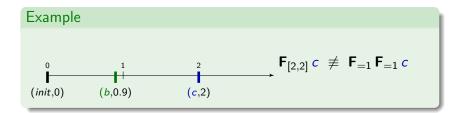
Definition Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$: • $\pi, i \models \varphi \ \mathbf{U}_I \ \psi$ iff there exists some j > 0 s.t. - $\pi, i + j \models \psi$, - $\pi, i + k \models \varphi$ for all 0 < k < j, - $t_{i+i} - t_i \in I$.



Definition Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$: • $\pi, i \models \varphi ~ \mathbf{U}_I ~ \psi$ iff there exists some j > 0 s.t. - $\pi, i + j \models \psi$, - $\pi, i + k \models \varphi$ for all 0 < k < j, - $t_{i+j} - t_i \in I$.



Definition Pointwise semantics of MTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$: • $\pi, i \models \varphi \ \mathbf{U}_I \ \psi$ iff there exists some j > 0 s.t. - $\pi, i + j \models \psi$, - $\pi, i + k \models \varphi$ for all 0 < k < j, - $t_{i+j} - t_i \in I$.



Definition

$$\mathsf{TPTL} \ni \varphi ::= \bigcirc | \mathbf{x} \sim \mathbf{c} | \neg \varphi | \varphi \lor \varphi | \varphi \mathbf{U} \varphi | \mathbf{x}. \varphi$$

where \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$, *x* ranges over a set of formula clocks, $c \in \mathbb{Q}^+$ and $\sim \in \{<, \leq, =, \geq, >\}$.

Definition

•
$$\pi, i, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

Definition

- $\pi, i, \tau \models x \sim c$ iff $\tau(x) \sim c$
- $\pi, i, \tau \models \mathbf{x}. \varphi$ iff $\pi, i, \tau \models \varphi$

Definition

Pointwise semantics of TPTL: over $\pi = (w_i, t_i)_i$ with $t_0 = 0$, under some clock valuation τ : :

- $\pi, i, \tau \models x \sim c$ iff $\tau(x) \sim c$
- $\pi, i, \tau \models \mathbf{x}. \varphi$ iff $\pi, i, \tau \models \varphi$
- $\pi, i, \tau \models \varphi \ \mathbf{U} \ \psi$ iff there exists some j > 0 s.t.

$$-\pi, i+j, \tau+t_{i+j}-t_i \models \psi_i$$

 $-\pi, i+k, \tau+t_{i+k}-t_i \models \varphi$ for all 0 < k < j.

Definition

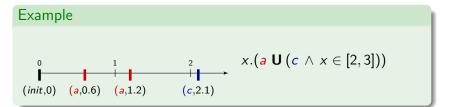
•
$$\pi, i, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, i, \tau \models \mathbf{x}. \varphi$$
 iff $\pi, i, \tau \models \mathbf{x}$

•
$$\pi, i, \tau \models \varphi \ \mathbf{U} \ \psi$$
 iff there exists some $j > 0$ s.t.

$$-\pi, i+j, \tau+t_{i+j}-t_i \models \psi$$

$$-\pi, i+k, \tau + t_{i+k} - t_i \models \varphi \text{ for all } 0 < k < j.$$



Definition

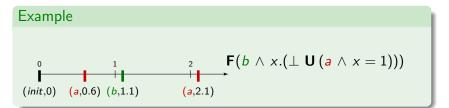
•
$$\pi, i, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, i, \tau \models \mathbf{x}. \varphi$$
 iff $\pi, i, \tau \models \mathbf{x}$

•
$$\pi, i, \tau \models \varphi \cup \psi$$
 iff there exists some $j > 0$ s.t.

$$-\pi, i+j, \tau+t_{i+j}-t_i \models \psi_i$$

$$-\pi, i+k, \tau + t_{i+k} - t_i \models \varphi \text{ for all } 0 < k < j.$$



Definition

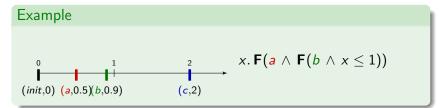
•
$$\pi, i, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, i, \tau \models \mathbf{x}. \varphi$$
 iff $\pi, i, \tau \models \mathbf{x}$

•
$$\pi, i, \tau \models \varphi \ \mathbf{U} \ \psi$$
 iff there exists some $j > 0$ s.t.

$$-\pi, i+j, \tau+t_{i+j}-t_i \models \psi_i$$

$$-\pi, i+k, \tau + t_{i+k} - t_i \models \varphi \text{ for all } 0 < k < j.$$



Definition

•
$$\pi, t \models \varphi \mathbf{U}_{\mathbf{I}} \psi$$
 iff there exists some $u > 0$ s.t.
- $\pi, t + u \models \psi$,

$$-\pi, t + v \models \varphi$$
 for all $0 < v < u$,

$$- u \in I$$
.

Definition

•
$$\pi, t \models \varphi \ \mathbf{U}_{\mathbf{I}} \ \psi$$
 iff there exists some $u > 0$ s.t.
- $\pi, t + u \models \psi$,
- $\pi, t + v \models \varphi$ for all $0 < v < u$,
- $u \in \mathbf{I}$.

•
$$\pi, t \models p$$
 iff $p \in \pi(t)$

Definition

•
$$\pi, t \models \varphi \mathbf{U}_{\mathbf{I}} \psi$$
 iff there exists some $u > 0$ s.t.
- $\pi, t + u \models \psi,$
- $\pi, t + v \models \varphi$ for all $0 < v < u,$

$$- u \in I$$

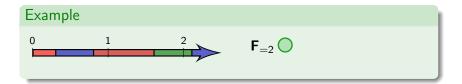
•
$$\pi, t \models p$$
 iff $p \in \pi(t)$

Definition

•
$$\pi, t \models \varphi \mathbf{U}_{\mathbf{I}} \psi$$
 iff there exists some $u > 0$ s.t.
- $\pi, t + u \models \psi,$
- $\pi, t + v \models \varphi$ for all $0 < v < u,$

$$- u \in I$$
.

•
$$\pi, t \models p$$
 iff $p \in \pi(t)$



Definition

•
$$\pi, t \models \varphi \mathbf{U}_{\mathbf{I}} \psi$$
 iff there exists some $u > 0$ s.t.
- $\pi, t + u \models \psi,$
- $\pi, t + v \models \varphi$ for all $0 < v < u,$

$$- u \in I$$
.

•
$$\pi, t \models p$$
 iff $p \in \pi(t)$

Definition

•
$$\pi, t, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

Definition

•
$$\pi, t, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, t, \tau \models x. \varphi$$
 iff $\pi, i, \tau \models x \leftarrow 0$

Definition

Continuous semantics of TPTL: over $\pi : \mathbb{R}^+ \to \{ \bigcirc, \bigcirc, ... \}$:

•
$$\pi, t, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, t, \tau \models x. \varphi$$
 iff $\pi, i, \tau \models x \mapsto \varphi$

• $\pi, t, \tau \models \varphi \ \mathbf{U} \ \psi$ iff there exists some u > 0 s.t.

$$-\pi, t+u, \tau+u-t \models \psi,$$

 $-\pi, i+k, \tau + v - t \models \varphi$ for all 0 < v < u.

Definition

Continuous semantics of TPTL: over $\pi : \mathbb{R}^+ \to \{ \bigcirc, \bigcirc, ... \}$:

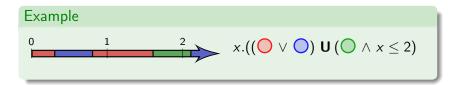
•
$$\pi, t, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, t, \tau \models x. \varphi$$
 iff $\pi, i, \tau \models x \mapsto \varphi$

• $\pi, t, \tau \models \varphi \ \mathbf{U} \ \psi$ iff there exists some u > 0 s.t.

$$-\pi, t+u, \tau+u-t \models \psi$$

$$-\pi, i + k, \tau + v - t \models \varphi$$
 for all $0 < v < u$.



Definition

Continuous semantics of TPTL: over $\pi : \mathbb{R}^+ \to \{ \bigcirc, \bigcirc, ... \}$:

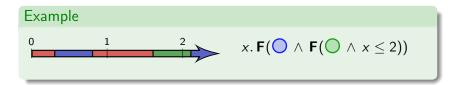
•
$$\pi, t, \tau \models x \sim c$$
 iff $\tau(x) \sim c$

•
$$\pi, t, \tau \models x. \varphi$$
 iff $\pi, i, \tau \models x \mapsto \varphi$

• $\pi, t, \tau \models \varphi \ \mathbf{U} \ \psi$ iff there exists some u > 0 s.t.

$$-\pi, t+u, \tau+u-t \models \psi$$

$$-\pi, i + k, \tau + v - t \models \varphi$$
 for all $0 < v < u$.



Lemma

MTL can be translated into TPTL.

Proof.

$$\varphi \mathbf{U}_{I} \psi \equiv \mathbf{x}. \varphi \mathbf{U} (\psi \wedge \mathbf{x} \in I).$$

Lemma

MTL can be translated into TPTL.

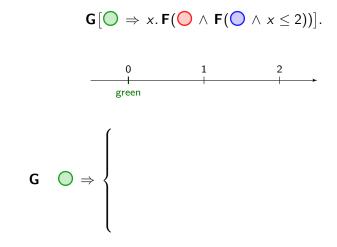
Proof.

$$\varphi \mathbf{U}_{I} \psi \equiv \mathbf{x}. \varphi \mathbf{U} (\psi \wedge \mathbf{x} \in I).$$

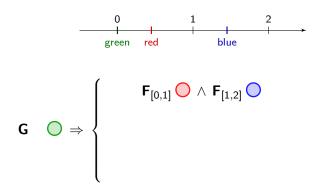
Conversely, consider the following TPTL formula:

$$\mathbf{G}[\bigcirc \Rightarrow x. \mathbf{F}(\bigcirc \land \mathbf{F}(\bigcirc \land x \leq 2))].$$

It characterizes the following pattern:



$$\mathbf{G}[\bigcirc \Rightarrow x. \mathbf{F}(\bigcirc \land \mathbf{F}(\bigcirc \land x \leq 2))].$$



- - -

$$\mathbf{G}\left[\bigcirc \Rightarrow x. \mathbf{F}(\bigcirc \land \mathbf{F}(\bigcirc \land x \leq 2))\right]$$

$$\xrightarrow{0} \qquad 1 \qquad 2$$

$$\xrightarrow{\text{green red blue}}$$

$$\mathbf{G} \bigcirc \Rightarrow \begin{cases} \mathbf{F}_{[0,1]} \bigcirc \land \mathbf{F}_{[1,2]} \bigcirc$$

$$\mathbf{F}_{[0,1]}(\bigcirc \land \mathbf{F}_{[0,1]} \bigcirc)$$

▲ 臣 ▶ ▲ 臣 ▶

$$\mathbf{G}\left[\bigcirc \Rightarrow x. \mathbf{F}(\bigcirc \land \mathbf{F}(\bigcirc \land x \leq 2))\right].$$

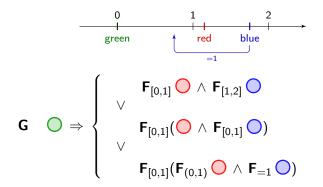
$$\mathbf{G} \quad \bigcirc \Rightarrow \begin{cases} \mathbf{F}_{[0,1]} \bigcirc \land \mathbf{F}_{[1,2]} \bigcirc \\ \lor \\ \mathbf{F}_{[0,1]} (\bigcirc \land \mathbf{F}_{[0,1]} \bigcirc) \end{cases}$$

* ヨト * ヨト

$$\mathbf{G}[\bigcirc \Rightarrow x. \mathbf{F}(\bigcirc \land \mathbf{F}(\bigcirc \land x \leq 2))].$$



$$\mathsf{G}[\bigcirc \Rightarrow x. \mathsf{F}(\bigcirc \land \mathsf{F}(\bigcirc \land x \leq 2))].$$



Remark

This translation is only valid in the continuous semantics

Theorem

TPTL is strictly more expressive than MTL.

Theorem

TPTL is strictly more expressive than MTL.

Proof.

• In the pointwise semantics:

$$\mathbf{G}\left[\bigcirc \Rightarrow x. \, \mathbf{F}(\bigcirc \land \, \mathbf{F}(\bigcirc \land \, x \leq 2))\right]$$

cannot be expressed in MTL.

In both semantics:

$$\varphi = x. \ \mathbf{F}(\bigcirc \land x \leq 1 \land \mathbf{G}(x \leq 1 \Rightarrow \neg \bigcirc))$$

cannot be expressed in MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).

Outline of the talk

Introduction

2 Extending temporal logics with real-time constraints • Continuous and pointwise semantics • Expressiveness issues

- Model checking timed linear-time logics
 Undecidability of MTL and TPTL
 Decidable fragments
- 4 Model checking timed branching-time logics

MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the continuous semantics.

MTL model-checking

Theorem

MTL model-checking and satisfiability are <u>undecidable</u> under the continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

MTL model-checking

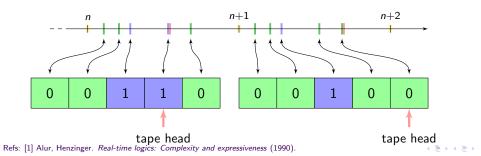
Theorem

MTL model-checking and satisfiability are <u>undecidable</u> under the continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine



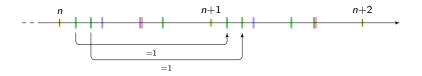
Theorem

MTL model-checking and satisfiability are <u>undecidable</u> under the continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine



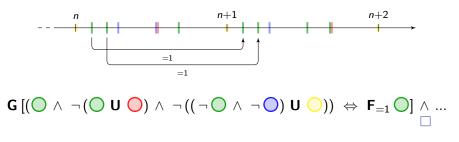
Theorem

MTL model-checking and satisfiability are <u>undecidable</u> under the continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine



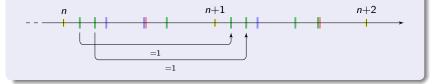
Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

Remark

This reduction requires continuous semantics, or the use of past-time modalities:

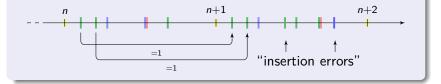
Remark

This reduction requires continuous semantics, or the use of past-time modalities:



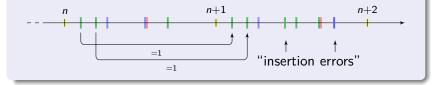
Remark

This reduction requires continuous semantics, or the use of past-time modalities:



Remark

This reduction requires continuous semantics, or the use of past-time modalities:



Theorem

Under pointwise semantics, MTL model-checking and satisfiability

- are undecidable over infinite timed words;
- are decidable (with non-primitive recursive complexity) over finite timed words.

Metric Interval Temporal Logic

Definition

MITL is the fragment of MTL where punctuality is not allowed:

$$\mathsf{MITL} \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \lor \varphi | \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$ and / is a non-punctual interval with bounds in $\mathbb{Q}^+ \cup \{+\infty\}$.

Metric Interval Temporal Logic

Definition

MITL is the fragment of MTL where punctuality is not allowed:

$$\mathsf{MITL} \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \lor \varphi | \varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$ and / is a non-punctual interval with bounds in $\mathbb{Q}^+ \cup \{+\infty\}$.

Example

- $G(\bigcirc \Rightarrow F_{[1,2]}\bigcirc)$ is an MITL formula;
- $G(\bigcirc \Rightarrow F_{=1}\bigcirc)$ is not.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Metric Interval Temporal Logic

Definition

MITL is the fragment of MTL where punctuality is not allowed:

$$\mathsf{MITL} \ni \varphi ::= \bigcirc |\neg \varphi| \varphi \lor \varphi |\varphi \mathsf{U}_{\mathsf{I}} \varphi$$

where \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$ and / is a non-punctual interval with bounds in $\mathbb{Q}^+ \cup \{+\infty\}$.

Example

- $G(\bigcirc \Rightarrow F_{[1,2]}\bigcirc)$ is an MITL formula;
- $G(\bigcirc \Rightarrow F_{=1}\bigcirc)$ is not.

Theorem

MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Definition

CoFlatMTL is the fragment of MTL defined as:

 $\begin{aligned} \mathsf{CoFlat}\mathsf{MTL} \ni \varphi ::= \bigcirc \mid \neg \bigcirc \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \\ \varphi \: \mathsf{U}_{I} \: \varphi \mid \varphi \: \mathsf{U}_{J} \: \psi \mid \varphi \: \mathsf{R}_{I} \: \varphi \mid \psi \: \mathsf{R}_{J} \: \varphi \end{aligned}$

where

• \bigcirc ranges over $\{\bigcirc, \bigcirc, ...\}$,

• I ranges over *bounded* intervals with bounds in Q,

- J ranges over intervals with bounds in $\mathbb{Q} \cup \{+\infty\}$, and
- ψ ranges over MITL.

Definition

CoFlatMTL is the fragment of MTL defined as:

 $CoFlatMTL \ni \varphi ::= \bigcirc | \neg \bigcirc | \varphi \lor \varphi | \varphi \land \varphi |$ $\varphi \cup \mathcal{U}_{I} \varphi | \varphi \cup \mathcal{U}_{J} \psi | \varphi \cap \mathcal{R}_{I} \varphi | \psi \cap \mathcal{R}_{J} \varphi$

Remark

CoFlatMTL is not closed under negation.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

Definition

CoFlatMTL is the fragment of MTL defined as:

 $\begin{array}{l} \mathsf{CoFlat}\mathsf{MTL} \ni \varphi ::= \bigcirc \mid \neg \bigcirc \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \\ \varphi \: \mathsf{U}_{I} \: \varphi \mid \varphi \: \mathsf{U}_{J} \: \psi \mid \varphi \: \mathsf{R}_{I} \: \varphi \mid \psi \: \mathsf{R}_{J} \: \varphi \end{array}$

Remark

CoFlatMTL is not closed under negation.

Example

- $G(\bigcirc \Rightarrow F_{=1}\bigcirc)$ is in CoFlatMTL.
- $F(\bigcirc \land G_{=1} \bigcirc)$ is in FlatMTL, but not in CoFlatMTL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

Definition

CoFlatMTL is the fragment of MTL defined as:

 $\begin{aligned} \mathsf{CoFlat}\mathsf{MTL} \ni \varphi ::= \bigcirc \mid \neg \bigcirc \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \\ \varphi \: \mathsf{U}_{I} \: \varphi \mid \varphi \: \mathsf{U}_{J} \: \psi \mid \varphi \: \mathsf{R}_{I} \: \varphi \mid \psi \: \mathsf{R}_{J} \: \varphi \end{aligned}$

Remark

CoFlatMTL is not closed under negation.

Theorem

CoFlatMTL model-checking is EXPSPACE-complete. CoFlatMTL satisfiability is undecidable.

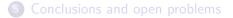
Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

Outline of the talk

Introduction

2 Extending temporal logics with real-time constraints • Continuous and pointwise semantics • Expressiveness issues

- Model checking timed linear-time logics
 Undecidability of MTL and TPTL
 Decidable fragments
- 4 Model checking timed branching-time logics



Definition

$$\mathsf{T}\mathsf{C}\mathsf{T}\mathsf{L}\ni\varphi::=\bigcirc|\neg\varphi|\varphi\wedge\varphi|\mathbf{E}\varphi\mathbf{U}_{\sim c}\varphi|\mathbf{A}\varphi\mathbf{U}_{\sim c}\varphi$$

where $\bigcirc \in \{\bigcirc, \bigcirc, \bigcirc, \ldots\}$, $\sim \in \{\leq, <, =, >, \geq\}$ and $c \in \mathbb{N}$.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

★ E ► < E ►</p>

$$\mathsf{TCTL} \ni \varphi ::= \bigcirc | \neg \varphi | \varphi \land \varphi | \mathsf{E}\varphi \mathsf{U}_{\sim c} \varphi | \mathsf{A}\varphi \mathsf{U}_{\sim c} \varphi$$

where $\bigcirc \in \{\bigcirc, \bigcirc, \bigcirc, \ldots\}$, $\sim \in \{\leq, <, =, >, \geq\}$ and $c \in \mathbb{N}$.

Example

• $AG(\bigcirc \Rightarrow EF_{\leq 5}\bigcirc)$

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

$$\mathsf{T}\mathsf{C}\mathsf{T}\mathsf{L}\ni\varphi::=\bigcirc|\neg\varphi|\varphi\wedge\varphi|\mathbf{E}\varphi|\mathbf{U}_{\sim c}\varphi|\mathbf{A}\varphi|\mathbf{U}_{\sim c}\varphi$$

where $\bigcirc \in \{\bigcirc, \bigcirc, \bigcirc, \ldots\}$, $\sim \in \{\leq, <, =, >, \geq\}$ and $c \in \mathbb{N}$.

Example

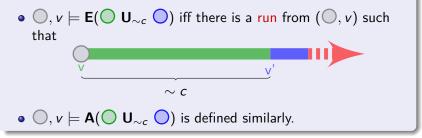
•
$$AG(\bigcirc \Rightarrow EF_{\leq 5}\bigcirc)$$

•
$$AF(AG_{\leq 5} \bigcirc)$$

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

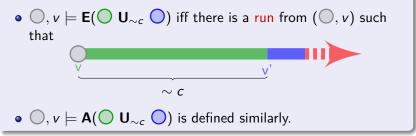
Definition

The semantics of TCTL is defined as follows: let \bigcirc be a location and v be a clock valuation.



Definition

The semantics of TCTL is defined as follows: let \bigcirc be a location and v be a clock valuation.

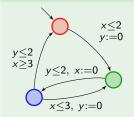


Remark

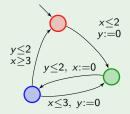
We could also define a pointwise semantics:

$$(v) \qquad \text{delay} = c \qquad \text{action} \qquad (v') \qquad \text{delay} = c' \qquad (v'+c) \qquad (v'+c) \qquad (v') \qquad (v'+c) \qquad ($$

Example

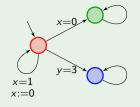


- \bigcirc , $\binom{x=1.2}{y=0.4} \models \mathsf{E} \bigcirc \mathsf{U}_{\geq 1} \bigcirc$
- $\bigcirc, \begin{pmatrix} x=1.2\\ y=0.4 \end{pmatrix} \models \mathbf{A} \, \mathbf{G} \, \neg \, \bigcirc$



•
$$\bigcirc, \begin{pmatrix} x=1.2\\ y=0.4 \end{pmatrix} \models \mathsf{E} \bigcirc \mathsf{U}_{\geq 1} \bigcirc$$

•
$$\bigcirc, \begin{pmatrix} x=1.2\\ y=0.4 \end{pmatrix} \models \mathbf{A} \, \mathbf{G} \, \neg \, \bigcirc$$



•
$$\bigcirc, \begin{pmatrix} x=0\\ y=0 \end{pmatrix} \stackrel{?}{\models} \mathsf{E}(\mathsf{E}\,\mathsf{F}_{=1}\,\bigcirc) \;\mathsf{U}_{=3}\,\bigcirc$$

Lemma

Let \bigcirc be a location and φ be a TCTL formula. For any two valuations v and v' that belong to the same region,

$$\bigcirc, \mathbf{v} \models \varphi \quad \Leftrightarrow \quad \bigcirc, \mathbf{v}' \models \varphi.$$

Lemma

Let \bigcirc be a location and φ be a TCTL formula. For any two valuations v and v' that belong to the same region,

$$\bigcirc, \mathbf{v} \models \varphi \quad \Leftrightarrow \quad \bigcirc, \mathbf{v}' \models \varphi.$$

Proof.

By induction on φ .

Lemma

Let \bigcirc be a location and φ be a TCTL formula. For any two valuations v and v' that belong to the same region,

$$\bigcirc, \mathbf{v} \models \varphi \quad \Leftrightarrow \quad \bigcirc, \mathbf{v}' \models \varphi.$$

Proof.

By induction on φ .

Theorem TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Lemma

Let \bigcirc be a location and φ be a TCTL formula. For any two valuations v and v' that belong to the same region,

$$\bigcirc, \mathbf{v} \models \varphi \quad \Leftrightarrow \quad \bigcirc, \mathbf{v}' \models \varphi.$$

Proof.

By induction on φ .

Theorem

TCTL model-checking is PSPACE-complete.

Proof.

Space-efficient CTL labelling algorithm on the region graph.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Outline of the talk

Introduction

2 Extending temporal logics with real-time constraints • Continuous and pointwise semantics • Expressiveness issues

- Model checking timed linear-time logics
 Undecidability of MTL and TPTL
 Decidable fragments
- 4 Model checking timed branching-time logics

5 Conclusions and open problems

Real-time temporal logics have been much studied:

Real-time temporal logics have been much studied:

- linear-time:
 - natural extensions of LTL are undecidable;
 - several restrictions lead to decidability;
 - however, model-checking linear-time logics is hard;
 - no implementation exists.

Real-time temporal logics have been much studied:

- linear-time:
 - natural extensions of LTL are undecidable;
 - several restrictions lead to decidability;
 - however, model-checking linear-time logics is hard;
 - no implementation exists.
- branching-time:
 - TCTL model-checking is in PSPACE;
 - can be made efficient in practice;
 - implemented in several tools (Uppaal, Kronos, ...)

Real-time temporal logics have been much studied:

- linear-time:
 - natural extensions of LTL are undecidable;
 - several restrictions lead to decidability;
 - however, model-checking linear-time logics is hard;
 - no implementation exists.
- branching-time:
 - TCTL model-checking is in PSPACE;
 - can be made efficient in practice;
 - implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:

- symbolic algorithms for linear-time temporal logics;
- robust model-checking.