
Real-time Model Checking
— Timed Temporal Logics —

Nicolas MARKEY

Lav. Spécification & Vérification
CNRS & ENS Cachan – France

March 3, 2010

(Quantitative) Model checking

system:

⇒

property:

Always(safe)model-checking
algorithm

yes/no

(Quantitative) Model checking

system:

⇒

property:

Always(safe)model-checking
algorithm

yes/no

timed automata

(Quantitative) Model checking

system:

⇒

property:

Always(safe)model-checking
algorithm

yes/no

timed automata

reachability

via regions

(Quantitative) Model checking

system:

⇒

property:

Always(safe)model-checking
algorithm

yes/no

timed automata

reachability

via regions quantitative

temporal logics

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= X

|= U

|= F ≡ > U

|= G ≡ ¬ (F ¬)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= X ϕ | ϕ U ϕ

|= Eϕ |= Aϕ

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | X ϕ | ϕ U ϕ

Example

(U) ∨ G : weak until

G F : “infinitely often”

A G(⇒ A F): response property

A(G F ⇒ G): fair runs are safe (not a CTL formula)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | X ϕ | ϕ U ϕ

Example

(U) ∨ G : weak until

G F : “infinitely often”

A G(⇒ A F): response property

A(G F ⇒ G): fair runs are safe (not a CTL formula)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | X ϕ | ϕ U ϕ

Example

(U) ∨ G : weak until

G F : “infinitely often”

A G(⇒ A F): response property

A(G F ⇒ G): fair runs are safe (not a CTL formula)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ

CTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | X ϕ | ϕ U ϕ

Example

(U) ∨ G : weak until

G F : “infinitely often”

A G(⇒ A F): response property

A(G F ⇒ G): fair runs are safe (not a CTL formula)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Outline of the talk

1 Introduction

2 Extending temporal logics with real-time constraints
Continuous and pointwise semantics
Expressiveness issues

3 Model checking timed linear-time logics
Undecidability of MTL and TPTL
Decidable fragments

4 Model checking timed branching-time logics

5 Conclusions and open problems

Outline of the talk

1 Introduction

2 Extending temporal logics with real-time constraints
Continuous and pointwise semantics
Expressiveness issues

3 Model checking timed linear-time logics
Undecidability of MTL and TPTL
Decidable fragments

4 Model checking timed branching-time logics

5 Conclusions and open problems

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks

1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks
1.4 1.5 1.8 3.6 0.9

x :=0
x≤5

|= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time
decorating modalities with timing constraints:

1.4 3.4 0.2 1.3 1.2 |= U=5

1.4 3.5 1.8 3.6 0.9 |= F≥6 ≡ > U≥6

1.4 1.7 2.5 0.7 1.2 |= G≤7 ≡ ¬ (F≤7 ¬)

using formula clocks
1.4 1.5 1.8 3.6 0.9

x :=0
x≤5 |= F(∧ x .G(x ≤ 5 ⇒ ¬))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed words vs. timed state sequences

Example

a, x≤2
y :=0 b, y>0

x :=0

a, x≥2
y :=0

c, y≤2
x :=0

pointwise semantics

x=0
y=0

x=1.5
y=0

a
1.5

x=0
y=1.3

b
2.8

x=2.6
y=0

a
5.4

x=0
y=1.3

c
6.7

continuous semantics

x=0
y=0

x=1.5
y=0

x=0
y=1.3

x=2.6
y=0

x=0
y=1.3

Timed logics in the pointwise framework

Definition

MTL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is an interval with bounds
in Q+ ∪ {+∞}.

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Example

0 1 2

(init,0) (a,0.6) (a,1.2) (c,2.1)

a U[2,3] c

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Example

0 1 2

(init,0) (b,0.8) (b,1.3) (a,2.3)

F(b ∧ ⊥ U[1,1] a)

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Example

0 1 2

(init,0) (b,0.9) (c,2)

F[2,2] c

6≡ F=1 F=1 c

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Example

0 1 2

(init,0) (b,0.9) (c,2)

F[2,2] c
def
= F=2 c

6≡ F=1 F=1 c

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over π = (wi , ti)i with t0 = 0:

π, i |= ϕ UI ψ iff there exists some j > 0 s.t.
– π, i + j |= ψ,
– π, i + k |= ϕ for all 0 < k < j ,
– ti+j − ti ∈ I.

Example

0 1 2

(init,0) (b,0.9) (c,2)

F[2,2] c 6≡ F=1 F=1 c

Timed logics in the pointwise framework

Definition

TPTL 3 ϕ ::= | x ∼ c | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | x . ϕ

where ranges over { , , ...}, x ranges over a set of formula
clocks, c ∈ Q+ and ∼ ∈ {<,≤,=,≥, >}.

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c

π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Example

0 1 2

(init,0) (a,0.6) (a,1.2) (c,2.1)

x .(a U (c ∧ x ∈ [2, 3]))

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Example

0 1 2

(init,0) (a,0.6) (b,1.1) (a,2.1)

F(b ∧ x .(⊥ U (a ∧ x = 1)))

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over π = (wi , ti)i with t0 = 0,
under some clock valuation τ : :

π, i , τ |= x ∼ c iff τ(x) ∼ c
π, i , τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, i , τ |= ϕ U ψ iff there exists some j > 0 s.t.
– π, i + j , τ + ti+j − ti |= ψ,
– π, i + k, τ + ti+k − ti |= ϕ for all 0 < k < j .

Example

0 1 2

(init,0) (a,0.5)(b,0.9) (c,2)

x .F(a ∧ F(b ∧ x ≤ 1))

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)

Example
0 1 2 (∨) U≤2

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)

Example
0 1 2 F=2

≡ F=1(F=1)

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over π : R+ → { , , ...}:

π, t |= ϕ UI ψ iff there exists some u > 0 s.t.
– π, t + u |= ψ,
– π, t + v |= ϕ for all 0 < v < u,
– u ∈ I.

π, t |= p iff p ∈ π(t)

Example
0 1 2 F=2 ≡ F=1(F=1)

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Example
0 1 2 x .((∨) U (∧ x ≤ 2)

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over π : R+ → { , , ...}:

π, t, τ |= x ∼ c iff τ(x) ∼ c

π, t, τ |= x . ϕ iff π, i , τ [x←0] |= ϕ

π, t, τ |= ϕ U ψ iff there exists some u > 0 s.t.
– π, t + u, τ + u − t |= ψ,
– π, i + k, τ + v − t |= ϕ for all 0 < v < u.

Example
0 1 2 x .F(∧ F(∧ x ≤ 2))

Relative expressiveness of TPTL and MTL

Lemma
MTL can be translated into TPTL.

Proof.

ϕ UI ψ ≡ x . ϕ U (ψ ∧ x ∈ I).

Relative expressiveness of TPTL and MTL

Lemma
MTL can be translated into TPTL.

Proof.

ϕ UI ψ ≡ x . ϕ U (ψ ∧ x ∈ I).

Conversely, consider the following TPTL formula:

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

It characterizes the following pattern:

green red blue

0 1 2

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green red blue

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green red blue

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green red blue

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green red blue

=1

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
.

green red blue

=1

0 1 2

G ⇒



F[0,1] ∧ F[1,2]

∨
F[0,1](∧ F[0,1])

∨
F[0,1](F(0,1) ∧ F=1)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).

Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Proof.

In the pointwise semantics:

G
[
⇒ x .F(∧ F(∧ x ≤ 2))

]
cannot be expressed in MTL.

In both semantics:

ϕ = x . F(∧ x ≤ 1 ∧ G(x ≤ 1 ⇒ ¬))

cannot be expressed in MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).

Outline of the talk

1 Introduction

2 Extending temporal logics with real-time constraints
Continuous and pointwise semantics
Expressiveness issues

3 Model checking timed linear-time logics
Undecidability of MTL and TPTL
Decidable fragments

4 Model checking timed branching-time logics

5 Conclusions and open problems

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

n n+1 n+2

0 0 1 1 0

tape head

0 0 1 0 0

tape head

=1

=1

G [(∧ ¬ (U) ∧ ¬ ((¬ ∧ ¬) U)) ⇔ F=1] ∧ ...

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

n n+1 n+2

0 0 1 1 0

tape head

0 0 1 0 0

tape head

=1

=1

G [(∧ ¬ (U) ∧ ¬ ((¬ ∧ ¬) U)) ⇔ F=1] ∧ ...

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

n n+1 n+2

0 0 1 1 0

tape head

0 0 1 0 0

tape head

=1

=1

G [(∧ ¬ (U) ∧ ¬ ((¬ ∧ ¬) U)) ⇔ F=1] ∧ ...

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

n n+1 n+2

=1

=1 “insertion errors”

Theorem
Under pointwise semantics, MTL model-checking and satisfiability

are undecidable over infinite timed words;
are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

n n+1 n+2

=1

=1

“insertion errors”

Theorem
Under pointwise semantics, MTL model-checking and satisfiability

are undecidable over infinite timed words;
are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

n n+1 n+2

=1

=1 “insertion errors”

Theorem
Under pointwise semantics, MTL model-checking and satisfiability

are undecidable over infinite timed words;
are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

n n+1 n+2

=1

=1 “insertion errors”

Theorem
Under pointwise semantics, MTL model-checking and satisfiability

are undecidable over infinite timed words;
are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is a non-punctual interval
with bounds in Q+ ∪ {+∞}.

Example

G(⇒ F[1,2]) is an MITL formula;

G(⇒ F=1) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is a non-punctual interval
with bounds in Q+ ∪ {+∞}.

Example

G(⇒ F[1,2]) is an MITL formula;

G(⇒ F=1) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL 3 ϕ ::= | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

where ranges over { , , ...} and I is a non-punctual interval
with bounds in Q+ ∪ {+∞}.

Example

G(⇒ F[1,2]) is an MITL formula;

G(⇒ F=1) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

where
ranges over { , , ...},

I ranges over bounded intervals with bounds in Q,
J ranges over intervals with bounds in Q ∪ {+∞}, and
ψ ranges over MITL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

Remark
CoFlatMTL is not closed under negation.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

Remark
CoFlatMTL is not closed under negation.

Example

G(⇒ F=1) is in CoFlatMTL.

F(∧ G=1) is in FlatMTL, but not in CoFlatMTL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL 3 ϕ ::= | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕ UI ϕ | ϕ UJ ψ | ϕ RI ϕ | ψ RJ ϕ

Remark
CoFlatMTL is not closed under negation.

Theorem
CoFlatMTL model-checking is EXPSPACE-complete.
CoFlatMTL satisfiability is undecidable.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

Outline of the talk

1 Introduction

2 Extending temporal logics with real-time constraints
Continuous and pointwise semantics
Expressiveness issues

3 Model checking timed linear-time logics
Undecidability of MTL and TPTL
Decidable fragments

4 Model checking timed branching-time logics

5 Conclusions and open problems

Branching-time logics with timing constraints – syntax

Definition

TCTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eϕ U∼c ϕ | Aϕ U∼c ϕ

where ∈ { , , , ...}, ∼ ∈ {≤, <,=, >,≥} and c ∈ N.

Example

A G(⇒ E F≤5)

A F(A G≤5)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints – syntax

Definition

TCTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eϕ U∼c ϕ | Aϕ U∼c ϕ

where ∈ { , , , ...}, ∼ ∈ {≤, <,=, >,≥} and c ∈ N.

Example

A G(⇒ E F≤5)

A F(A G≤5)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints – syntax

Definition

TCTL 3 ϕ ::= | ¬ϕ | ϕ ∧ ϕ | Eϕ U∼c ϕ | Aϕ U∼c ϕ

where ∈ { , , , ...}, ∼ ∈ {≤, <,=, >,≥} and c ∈ N.

Example

A G(⇒ E F≤5)

A F(A G≤5)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints – semantics

Definition
The semantics of TCTL is defined as follows: let be a location
and v be a clock valuation.

, v |= E(U∼c) iff there is a run from (, v) such
that

v v’
∼ c

, v |= A(U∼c) is defined similarly.

Remark
We could also define a pointwise semantics:

v v+c v ′ v ′+c′
delay = c action delay = c ′

Branching-time logics with timing constraints – semantics

Definition
The semantics of TCTL is defined as follows: let be a location
and v be a clock valuation.

, v |= E(U∼c) iff there is a run from (, v) such
that

v v’
∼ c

, v |= A(U∼c) is defined similarly.

Remark
We could also define a pointwise semantics:

v v+c v ′ v ′+c′
delay = c action delay = c ′

Branching-time logics with timing constraints – semantics

Example

x≤2
y :=0

y≤2
x≥3 y≤2, x :=0

x≤3, y :=0

,
(

x=1.2
y=0.4

)
|= E U≥1

,
(

x=1.2
y=0.4

)
|= A G ¬

x=1
x :=0

x=0

y=3

,
(

x=0
y=0

) ?

|= E(E F=1) U=3

Branching-time logics with timing constraints – semantics

Example

x≤2
y :=0

y≤2
x≥3 y≤2, x :=0

x≤3, y :=0

,
(

x=1.2
y=0.4

)
|= E U≥1

,
(

x=1.2
y=0.4

)
|= A G ¬

x=1
x :=0

x=0

y=3

,
(

x=0
y=0

) ?

|= E(E F=1) U=3

TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Proof.

By induction on ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Proof.

By induction on ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma
Let be a location and ϕ be a TCTL formula. For any two
valuations v and v ′ that belong to the same region,

, v |= ϕ ⇔ , v ′ |= ϕ.

Proof.

By induction on ϕ.

Theorem
TCTL model-checking is PSPACE-complete.

Proof.

Space-efficient CTL labelling algorithm on the region graph.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Outline of the talk

1 Introduction

2 Extending temporal logics with real-time constraints
Continuous and pointwise semantics
Expressiveness issues

3 Model checking timed linear-time logics
Undecidability of MTL and TPTL
Decidable fragments

4 Model checking timed branching-time logics

5 Conclusions and open problems

Conclusions and perspectives
Real-time temporal logics have been much studied:

linear-time:
natural extensions of LTL are undecidable;
several restrictions lead to decidability;
however, model-checking linear-time logics is hard;
no implementation exists.

branching-time:
TCTL model-checking is in PSPACE;
can be made efficient in practice;
implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
symbolic algorithms for linear-time temporal logics;
robust model-checking.

Conclusions and perspectives
Real-time temporal logics have been much studied:

linear-time:
natural extensions of LTL are undecidable;
several restrictions lead to decidability;
however, model-checking linear-time logics is hard;
no implementation exists.

branching-time:
TCTL model-checking is in PSPACE;
can be made efficient in practice;
implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
symbolic algorithms for linear-time temporal logics;
robust model-checking.

Conclusions and perspectives
Real-time temporal logics have been much studied:

linear-time:
natural extensions of LTL are undecidable;
several restrictions lead to decidability;
however, model-checking linear-time logics is hard;
no implementation exists.

branching-time:
TCTL model-checking is in PSPACE;
can be made efficient in practice;
implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
symbolic algorithms for linear-time temporal logics;
robust model-checking.

Conclusions and perspectives
Real-time temporal logics have been much studied:

linear-time:
natural extensions of LTL are undecidable;
several restrictions lead to decidability;
however, model-checking linear-time logics is hard;
no implementation exists.

branching-time:
TCTL model-checking is in PSPACE;
can be made efficient in practice;
implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
symbolic algorithms for linear-time temporal logics;
robust model-checking.

	Introduction
	Extending temporal logics with real-time constraints
	Continuous and pointwise semantics
	Expressiveness issues

	Model checking timed linear-time logics
	Undecidability of MTL and TPTL
	Decidable fragments

	Model checking timed branching-time logics
	Conclusions and open problems

