Real-time Model Checking

— Timed Temporal Logics —

Nicolas MARKEY

Lav. Spécification & Vérification
CNRS & ENS Cachan — France

March 3, 2010

(Quantitative) Model checking

system: property:

— model-checking

algorithm

<— Always(safe)

yes/no

(Quantitative) Model checking

system: property:

N\ maxa
a aut© — model-checking | <— Always(safe)
“ﬂ\;’/ AW algorithm

(Quantitative) Model checking

system: property:

N
£he

<— Always(safe)

(Quantitative) Model checking

system: property:

/N avd
g™ — A- ntita”
‘:\me s \ q 0(3
P P

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | oo A ¢ |Ep|AY
Ppr=XplpUgp

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | ~p|e A ¢|Ep|AY
Ypi=XplpUgp

—O0-0-O0-0-0- -O-O0-0O-F xO

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | oo A ¢ |Ep|AY
Ppr=XplpUgp

O F xO

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | ~p|e A ¢|Ep|AY
Ypi=XplpUgp

O = xO
—O0-0-0-O-0O~ ~-O-O~-O-F0Ou0

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | oo A ¢ |Ep|AY
Ppr=XplpUgp

O = xO
—O-0-0-0O FOuO

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | ~p|e A ¢|Ep|AY
Ypi=XplpUgp

O = xO
—-0O-O0-0-0O FOuO
-0~ ~O0-0O~ ~-O-O0-O-O-F FO=TUO

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | ~p|e A ¢|Ep|AY
Ypi=XplpUgp

O = xO
—0O-0-0-0O FOuO
O = FO=TuO
—-O0-0-0-0-0-0-0O-0O-0O-F 60O=~(F-0)

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp

CTL2 =0 | oo A ¢ |Ep|AY
Ppr=XplpUgp

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp
CTLo =0 | ~¢|p A ¢|Ey| Ay
Y= | XpleUgp

Example

o (OUO) v GO: weak until

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp
CTL2 =0 | ~p|e A ¢|Ep|AY
Y=g | XpleUgp

Example

o (OUO) v GO: weak until
e GFO: “infinitely often”

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp
CTL2 =0 | ~p|e A ¢|Ep|AY
Y=g | XpleUgp

Example

o (OUO) v GO: weak until
e GFO: “infinitely often”

e AG(O = AFQ): response property

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Quick reminder on untimed temporal logics

LTL o :=O | mp e A | Xp|pUp
CTL2 =0 | ~p|e A ¢|Ep|AY
Y=g | XpleUgp

Example

o (OUO) Vv GO: weak until
e GFO: “infinitely often”

e AG(O = AFQ): response property
o A(GFO = GQ): fair runs are safe (not a CTL formula)

v

Refs: [1] Pnueli. The Temporal Logic of Programs (1977).
[2] Emerson, Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons (1982).

Outline of the talk

@ Introduction

9 Extending temporal logics with real-time constraints
@ Continuous and pointwise semantics
@ Expressiveness issues

© Model checking timed linear-time logics
@ Undecidability of MTL and TPTL
@ Decidable fragments

@ Model checking timed branching-time logics

© Conclusions and open problems

Outline of the talk

9 Extending temporal logics with real-time constraints
@ Continuous and pointwise semantics
@ Expressiveness issues

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—O0 0P 0*0R0™ - FOus0

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—O0*0>0 FOu_0O
HOE'OE}—.S’OE’O&qOO—'g' - F F50 =T U5 O

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOl—'Af'Ol—'?'Oz—‘S'OO—J'Ol—Q’O” F G C= - (F -0O)

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOE'OE'Oz—S'OO—KOl—% = G C= - (F7 -0O)

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOE'OE'OE'OO—KOE' = G C= - (F7 -0O)

@ using formula clocks

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOE'OE'OE'OO—KOE' = G C= - (F7 -0O)

@ using formula clocks

F FOAXxGx<5= -)

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Extending temporal modalities with time

@ decorating modalities with timing constraints:

—00"0>0 FOus 0O

1.4 3.5 1.8 3.6 0.9

HOE'OE'OE'OO—KOE' = G C= - (F7 -0O)

@ using formula clocks
% 15 : 1.8 : 3.60

x<5
x:=0 N): F(O VAN X.G(X <5 = =))

Refs: [1] Alur, Henzinger. A Really Temporal Logic (1989).
[2] Koymans. Specifying Real-Time Properties with Metric Temporal Logic (1990).

Timed words vs. timed state sequences

Example

continuous semantics [

pointwise semantics f

Timed words vs. timed state sequences

Example
x<2
020
S

continuous semantics

< X
o o

pointwise semantics

Timed words vs. timed state sequences

Example

continuous semantics
x=1.5
y=0
pointwise semantics f '

1.5

Timed words vs. timed state sequences

Example

continuous semantics
x=0

y=1.3

pointwise semantics f

15 28

Timed words vs. timed state sequences

Example

continuous semantics ;
x=2.6
y=0
pointwise semantics f ——

15 28 5.4

Timed words vs. timed state sequences

Example

continuous semantics

pointwise semantics f

15 28 54 6.7

Timed logics in the pointwise framework
Definition
MTL2 ¢ :=O | -ple Ve lpUp

where O ranges over {O, O, ...} and / is an interval with bounds
in QT U {+oc}.

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

_7T>i+j':1/}1
- mi+kEpforald<k<y,

- tiyj—t € /.

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

_7T>i+j':1/}1
- mi+kEpforald<k<y,

- tiyj—t € /.

Example

0 1 2 a U[2’3] c
——t—+ H
(init,0) (a,0.6) (a,1.2) (c,2.1)

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

- 7T>i+j ':¢1
- mi+kEpforald<k<y,
- tiyj—t € /.
Example
1 LI | ! 1

(init0) (b,0.8) (b,1.3) (3,2.3)

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

_7T>i+j':¢1
- mi+kEpforald<k<y,

- tiyj—t € /.

Example

2 Flo2 ¢

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

_7T>i+j':1/}1
- mi+kEpforald<k<y,

- tiyj—t € /.

Example

2 F[2,2] cC = F:2C

Timed logics in the pointwise framework

Definition
Pointwise semantics of MTL: over m = (w;, t;); with to = 0:

o m,i =@ U; ¢ iff there exists some j > 0 s.t.

_7T>i+j':1/}1
- mi+kEpforald<k<y,

- tiyj—t € /.

Example

Fpoc # F=1Fac

Timed logics in the pointwise framework
Definition
TPTL9¢:::O|x~c| “pleVeleUop|x e

where O ranges over {O, O, ...}, x ranges over a set of formula
clocks, c € QT and ~ € {<, <, =,>,>}.

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :

o m,i,TEx~c iff 7(x)~c

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :

o m,i,TEx~c iff 7(x)~c

o m,i, T Ex.p iff m i, Tx—0] E

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :
o m,i,TEx~c iff 7(x)~c
o m,i, T Ex.p iff m i, Tx—0] E
o m,i,7 =@ U 1 iff there exists some j > 0 s.t.
= T i+, T+ tiy — i E
— itk T+t —tE@foral 0< k<.

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :
o m,i,TEx~c iff 7(x)~c
o m,i, T Ex.p iff m i, Tx—0] E
o m,i,7 =@ U 1 iff there exists some j > 0 s.t.
= T i+, T+ tiy — i E
— itk T+t —tE@foral 0< k<.

Example
0 .) x.(aU(c A x€2,3]))
I — H

(init,0) (a,0.6) (a,1.2) (c,2.1)

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :
o m,i,TEx~c iff 7(x)~c
o m,i, T Ex.p iff m i, Tx—0] E
o m,i,7 =@ U 1 iff there exists some j > 0 s.t.
= T i+, T+ tiy — i E
— itk T+t —tE@foral 0< k<.

Example

0 1 F(b A x(LU(a A x=1)))
I — i
(init,0) (2,0.6) (b,1.1) (a,2.1)

Timed logics in the pointwise framework

Definition
Pointwise semantics of TPTL: over m = (w;, t;); with ty = 0,
under some clock valuation 7: :
o m,i,TEx~c iff 7(x)~c
o m,i, T Ex.p iff m i, Tx—0] E
o m,i,7 =@ U 1 iff there exists some j > 0 s.t.
= T i+, T+ tiy — i E
— itk T+t —tE@foral 0< k<.

Example
0 1 2 x.F(a AN F(b A x<1))
I — i

(init,0) (2,0.5)b,0.9) (c,2)

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

—uel

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

- uel
o m,t=p iff pemn(t)

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

- uel
o m,t=p iff pemn(t)

Example
2

(ﬂ OvO)u,O

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

- uel
o m,t=p iff pemn(t)

Example

0 1 2 F_, O

Timed logics in the continuous framework

Definition
Continuous semantics of MTL: over 7: Rt — {O, O, ...}:
o m,t =@ U; ¢ iff there exists some u > 0 s.t.

- mt+uE,
-mt+vEeforall 0 <v<uy,

- uel
o m,t=p iff pemn(t)

Example

(ﬁ F.O

F_1(F2, O)

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over 7: R — {O, O, ...}:

o mt,TEXx~c iff 7(x)~c

Timed logics in the continuous framework

Definition
Continuous semantics of TPTL: over 7: R — {O, O, ...}:
o mt,TEXx~c iff 7(x)~c

o, t,TEx. ¢ iff 7 i,Tx—0] Ep

Timed logics in the continuous framework

Definition

Continuous semantics of TPTL: over 7: R — {O, O, ...}:
o mt,TEXx~c iff 7(x)~c
o, t,TEx. ¢ iff 7 i,Tx—0] Ep
o m,t,7 = ¢ U ¢ iff there exists some u > 0 s.t.

- mttuT+u—tE=,
- mi+tkTt+v—tEpforall0<v<u.

Timed logics in the continuous framework

Definition

Continuous semantics of TPTL: over 7: R — {O, O, ...}:
o mt,TEXx~c iff 7(x)~c
o, t,TEx. ¢ iff 7 i,Tx—0] Ep
o m,t,7 = ¢ U ¢ iff there exists some u > 0 s.t.

- mttuT+u—tE=,
- mi+tkTt+v—tEpforall0<v<u.

Example

1 2

Oﬂ x(OvO)u(O©Arx<2

Timed logics in the continuous framework

Definition

Continuous semantics of TPTL: over 7: R — {O, O, ...}:
o mt,TEXx~c iff 7(x)~c
o, t,TEx. ¢ iff 7 i,Tx—0] Ep
o m,t,7 = ¢ U ¢ iff there exists some u > 0 s.t.

- mttuT+u—tE=,
- mi+tkTt+v—tEpforall0<v<u.

Example

1 2

Oﬂ x.F(O AF(O A x<2)

Relative expressiveness of TPTL and MTL

Lemma
MTL can be translated into TPTL.

Proof.
U = x.pU@W A xel).

Relative expressiveness of TPTL and MTL

Lemma
MTL can be translated into TPTL.

Proof.
U = x.pU@W A xel).

Conversely, consider the following TPTL formula:
GO = x.F(O A F(O A x<2))].

It characterizes the following pattern:

0 1 2
[% '

green red blue

Relative expressiveness of TPTL and MTL

G[O = x.F(O A F(O A x <2))].

T
green

Relative expressiveness of TPTL and MTL
G[O = x.F(O AFO A x < 2))].

0 1 2
—

green red blue

FogO A FigO

Relative expressiveness of TPTL and MTL
G[O = x.F(O AFO A x < 2))].

0 1 2
]
T

} } }

T T T
green red blue

FogO A FigO

Vv
G O= Fio1)(O A Fio; O)

Relative expressiveness of TPTL and MTL

G[O = x.F(O A F(O A x <2))].

0 1 2
t +—4 +—
green red blue
Foy O A Fpy O
V

G O= Fo11(O A FoyO)

Relative expressiveness of TPTL and MTL

G[O = x.F(O A F(O A x <2))].

FogO A FigO
G O= Fio1)(O A Fio; O)

Fio.1)(Fo1) O A F_y O)

Relative expressiveness of TPTL and MTL

G[O = x.F(O A F(O A x <2))].

FogO A FigO
¢ O= Fo11(O A FoyO)

Fio.1)(Fo1) O A F_y O)

Remark
This translation is only valid in the continuous semantics

Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).

Relative expressiveness of TPTL and MTL

Theorem
TPTL is strictly more expressive than MTL.

Proof.
@ In the pointwise semantics:
G[O = x.F(O A F(O A x <2))]

cannot be expressed in MTL.

@ In both semantics:
p=x. FOAXx<1AG(Kx<1= -Q))

cannot be expressed in MTL.

Refs: [1] Bouyer, Chevalier, M. On the Expressiveness of TPTL and MTL (2005).

Outline of the talk

© Model checking timed linear-time logics
@ Undecidability of MTL and TPTL
@ Decidable fragments

MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

)

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine J

N a\\\\
o To [N«] [o T [l

tape head tape head

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem
MTL model-checking and satisfiability are undecidable under the

continuous semantics.

Proof.
Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine

J

ﬁ
PR -
Il
—
> e
—

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Theorem

MTL model-checking and satisfiability are undecidable under the
continuous semantics.

Proof.

Encode the halting problem of a Turing machine:

One time-unit = one configuration of the Turing machine J
n n+1 n+2
--—t . .

+

G[(OA-(OQUO)A = ((-O A -0O)Uu) & F_1 O] g

Refs: [1] Alur, Henzinger. Real-time logics: Complexity and expressiveness (1990).

MTL model-checking

Remark

This reduction requires continuous semantics, or the use of
past-time modalities:

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark

This reduction requires continuous semantics, or the use of
past-time modalities:

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark

This reduction requires continuous semantics, or the use of
past-time modalities:

t

e H ”
Insertion errors

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

MTL model-checking

Remark
This reduction requires continuous semantics, or the use of
past-time modalities:

— f f :

e - ”
Insertion errors

Theorem
Under pointwise semantics, MTL model-checking and satisfiability
@ are undecidable over infinite timed words;

@ are decidable (with non-primitive recursive complexity) over
finite timed words.

Refs: [1] Ouaknine, Worrell. On the decidability of Metric Temporal Logic (2005).
[2] Ouaknine, Worrell. On Metric Temporal Logic and faulty Turing machines (2006).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL o= QO | ~p|leVelpU g

where () ranges over {0,0, ...} and [is a non-punctual interval
with bounds in Q" U {+o0}.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL o= QO | ~p|leVelpU g

where () ranges over {0,0, ...} and [is a non-punctual interval
with bounds in Q" U {+o0}.

Example
e GO = Fi2 O) is an MITL formula;
e G(O = F_; Q) is not.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

Metric Interval Temporal Logic

Definition
MITL is the fragment of MTL where punctuality is not allowed:

MITL o= QO | ~p|leVelpU g

where () ranges over {0,0, ...} and [is a non-punctual interval
with bounds in Q" U {+o0}.

Example
e GO = Fi2 O) is an MITL formula;
e G(O = F_; Q) is not.

Theorem
MITL model checking and satisfiability are EXPSPACE-complete.

Refs: [1] Alur, Feder, Henzinger. The benefits of relaxing punctuality (1991).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

where
e O ranges over {0,0, b
@ [ranges over bounded intervals with bounds in Q,
@ J ranges over intervals with bounds in Q U {+o0}, and

@ 1) ranges over MITL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Example

o G(O = F_; Q) is in CoFlatMTL.
o F(O A G_; Q) is in FlatMTL, but not in CoFlatMTL.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

(Co)Flat MTL

Definition
CoFlatMTL is the fragment of MTL defined as:

CoFlatMTL3 o :=O | -O e Ve|e A ¢|
eUrploUsv|oR oY Ry

Remark
CoFlatMTL is not closed under negation.

Theorem

CoFlatMTL model-checking is EXPSPACE-complete.
CoFlatMTL satisfiability is undecidable.

Refs: [1] Bouyer, M., Ouaknine, Worrell. The Cost of Punctuality (2007).

Outline of the talk

@ Model checking timed branching-time logics

Branching-time logics with timing constraints — syntax
Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints — syntax
Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Example

o AG(O = EF50)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints — syntax
Definition
TCTL39:=0O | ¢ |e A9 |EpUsc o | Ap Unc @

where O {0,0,0,} ~e{<,<,=>,>}and ce N.

Example

o AG(O = EF50)
o AF(AG Q)

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Branching-time logics with timing constraints — semantics

Definition

The semantics of TCTL is defined as follows: let () be a location
and v be a clock valuation.

o O,vE=E(O U Q) iff there is a run from (O, v) such
that
® 11
: —

~ C

o O,vEAO U O) is defined similarly.

Branching-time logics with timing constraints — semantics

Definition

The semantics of TCTL is defined as follows: let () be a location
and v be a clock valuation.

o O,vE=E(O U Q) iff there is a run from (O, v) such
that
® 11
: — 1)

~ C

o O,vEAO U O) is defined similarly.

Remark
We could also define a pointwise semantics:

delay = ¢ ' delay = ¢’
@ Y @ action @ Y T

Branching-time logics with timing constraints — semantics

Example
0 O,(;%7) FEO U O

»O,(;%7) A6 -0

Branching-time logics with timing constraints — semantics

Example
0 O,(;%7) FEO U O

°O,(;3i) EAG-O

°O<)):E(EF—lo U_; O

TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Proof.

By induction on ¢.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Proof.

By induction on ¢.

Theorem
TCTL model-checking is PSPACE-complete.

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

TCTL model checking

Lemma

Let O) be a location and ¢ be a TCTL formula. For any two
valuations v and v' that belong to the same region,

OyveEe & O,VE®@

Proof.
By induction on ¢. O

Theorem
TCTL model-checking is PSPACE-complete.

Proof.
Space-efficient CTL labelling algorithm on the region graph. Ol

Refs: [1] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time (1993).

Outline of the talk

© Conclusions and open problems

Conclusions and perspectives

Real-time temporal logics have been much studied:

Conclusions and perspectives

Real-time temporal logics have been much studied:

@ linear-time:
e natural extensions of LTL are undecidable;
e several restrictions lead to decidability;
e however, model-checking linear-time logics is hard;
e no implementation exists.

Conclusions and perspectives

Real-time temporal logics have been much studied:

@ linear-time:
e natural extensions of LTL are undecidable;
e several restrictions lead to decidability;
e however, model-checking linear-time logics is hard;
e no implementation exists.

@ branching-time:

o TCTL model-checking is in PSPACE;
e can be made efficient in practice;
o implemented in several tools (Uppaal, Kronos, ...)

Conclusions and perspectives

Real-time temporal logics have been much studied:

@ linear-time:
e natural extensions of LTL are undecidable;
e several restrictions lead to decidability;
e however, model-checking linear-time logics is hard;
e no implementation exists.
@ branching-time:

o TCTL model-checking is in PSPACE;
e can be made efficient in practice;
o implemented in several tools (Uppaal, Kronos, ...)

Hot topics in real-time temporal logic model-checking:
@ symbolic algorithms for linear-time temporal logics;

@ robust model-checking.

	Introduction
	Extending temporal logics with real-time constraints
	Continuous and pointwise semantics
	Expressiveness issues

	Model checking timed linear-time logics
	Undecidability of MTL and TPTL
	Decidable fragments

	Model checking timed branching-time logics
	Conclusions and open problems

