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Time is not always sufficient

Timed automata are (rather) well understood – Can we go further?

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast): time
+ 2 picosec.
× 3 picosec.

energy
idle 10 W

in use 90 W

P2 (slow): time
+ 5 picosec.
× 7 picosec.

energy
idle 20 W

in use 30 W
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Time is not always sufficient

hybrid automata: timed automata augmented with variables
whose derivative is not constant.

; examples: leaking gas burner, water-level monitor, ...

x ≤ 1
ẋ = 1
ẏ = 1
ż = 1

true
ẋ = 1
ẏ = 1
ż = 0

x≤1, x :=0

x≥30, x :=0
x ,y ,z:=0

Theorem
Reachability is undecidable (even for timed automata with one
stopwatch).

Refs: [1] Henzinger, Kopke, Puri, Varaiya. What’s Decidable about Hybrid Automata? (1995).



Time is not always sufficient

hybrid automata: timed automata augmented with variables
whose derivative is not constant.

; examples: leaking gas burner, water-level monitor, ...

x ≤ 1
ẋ = 1
ẏ = 1
ż = 1

true
ẋ = 1
ẏ = 1
ż = 0

x≤1, x :=0

x≥30, x :=0
x ,y ,z:=0

timed automata with observers: similar to hybrid automata,
but the behavior only depends on clock variables.

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).



Outline of the talk

1 Introduction

2 Timed automata with observers

3 Resource-optimization problems
Optimal reachabililty
Weighted temporal logics
Optimal strategies

4 Resource-management problems

5 Conclusions and perspectives



Outline of the talk

1 Introduction

2 Timed automata with observers

3 Resource-optimization problems
Optimal reachabililty
Weighted temporal logics
Optimal strategies

4 Resource-management problems

5 Conclusions and perspectives



Timed automata with (linear) observers
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Optimal reachability

Example

ṗ=5 y=0

ṗ=7
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,
x≤2

y :=0

x≥3

p+=1

p+=4

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

min
(5t + 7(3− t) + 1

5t + 5(3− t) + 4

)
= 18

18
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22

0 2

The optimal schedule consists in
waiting 2 time units in ;
going through .
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ṗ=5

,
x≤2

y :=0

x≥3

p+=1

p+=4

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

min
(

5t + 7(3− t) + 1

5t + 5(3− t) + 4

)
= 18

18

20

22

0 2

The optimal schedule consists in
waiting 2 time units in ;
going through .



Optimal reachability

Example
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ṗ=5 y=0
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Optimal reachability

Theorem
Optimal reachability in priced timed automata is
PSPACE-complete.

Proof.

The region abstraction is not fine enough:

ṗ=3 ṗ=3 ṗ=3 ṗ=5

x :=0

p+=2
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[3] Bouyer, Brihaye, Bruyère, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).
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Weighted temporal logic

Example
Decorate temporal modalities with constraints on cost:

1.4 3.4 0.2 1.3 1.2 |= U=5

Example
G(failure ⇒ F≤250 repaired)

A G(failure ⇒ E Ftime≤5(repair ∧ A Fcost≤150 running))
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Decidable subcases

Theorem
WCTL model-checking is PSPACE-complete on 1-clock weighted
timed automata.

Proof.

region-based algorithm;

but region are not fine enough:

Refine regions: granularity 1/M |ϕ| is sufficient.

Refs: [1] Bouyer, Larsen, M. Model-Checking One-Clock Priced Timed Automata (2007).
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ṗ=2 ṗ=1
x=1

ṗ=1 ṗ=1
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Example
Timed games can also be extended with weights:
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x=1

A strategy for a player indicates which (action or delay)
transition to play;
A strategy is winning if all its outcomes are.
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Optimal winning strategy

Example

ṗ=5 y=0

ṗ=6

ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

max
(5t + 6(3− t) + 1

5t + 3(3− t) + 9

)
= 56/3

which is achieved with t = 1/3

18

20

Corollary
Regions are not sufficient for solving priced timed games.
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ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

max
(

5t + 6(3− t) + 1

5t + 3(3− t) + 9

)
= 56/3

which is achieved with t = 1/3

18

20

Corollary
Regions are not sufficient for solving priced timed games.



Optimal winning strategy

Example
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Computing optimal winning strategies is undecidable

Theorem
Computing optimal strategies in priced timed games is undecidable.

Proof.
The proof relies on simple modules that will allow encoding a
two-counter machine:

Adding the value of clock x to the cost:
Adding 1− x to the cost:

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
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Proof.
The proof relies on simple modules that will allow encoding a
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Computing optimal winning strategies is undecidable

Theorem
Computing optimal strategies in priced timed games is undecidable.

Proof.
The proof relies on simple modules that will allow encoding a
two-counter machine:

Checking that y = 2x :
Dividing clock x by 2:

Divide2(x)

ṗ=0 ṗ=0 ṗ=0 ṗ=0

Test(x=2y)

z=0 x=1
x :=0

y :=0 z=1
z:=0

z=0

z=0

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).



Computing optimal winning strategies is undecidable

Theorem
Computing optimal strategies in priced timed games is undecidable.

Proof.
The proof relies on simple modules that will allow encoding a
two-counter machine:

encode counter c1 as x1 = 2−c1 and counter c2 as x2 = 3−c1 ;
by cleverly juggling with clocks, we can achieve this encoding
with three clocks.

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).



Turn-based 1-clock priced timed games are decidable

Example
Optimal strategies do not always exist:

ṗ=2 ṗ=1

,

x=1

x=0

Optimal strategies may require memory:

ṗ=2

ṗ=1

,

x<1, x :=0

x=1

x>0
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Turn-based 1-clock priced timed games are decidable

Theorem
Turn-based 1-clock priced timed games always admit ε-optimal
winning strategies, and such strategies can be computed.

Proof.

Refs: [1] Bouyer, Cassez, Fleury, Larsen. Optimal Strategies in Priced Timed Game Automata (2004).
[2] Bouyer, Larsen, M., Rasmussen. Almost Optimal Strategies in One-Clock Priced Timed Automata (2006).
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ṗ=1ṗ=5
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Turn-based 1-clock priced timed games are decidable

Theorem
Turn-based 1-clock priced timed games always admit ε-optimal
winning strategies, and such strategies can be computed.

Proof.

The procedure terminates;
There is a positive granularity for with the region abstraction
is correct;
The optimal cost functions are piecewise affine, continuous,
decreasing functions. Their slopes are rates of the automaton.

Refs: [1] Bouyer, Cassez, Fleury, Larsen. Optimal Strategies in Priced Timed Game Automata (2004).
[2] Bouyer, Larsen, M., Rasmussen. Almost Optimal Strategies in One-Clock Priced Timed Automata (2006).
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Managing resources

Example

In some cases, resources can both
be consumed and regained.

The aim is then to keep the level
of resources within given bounds.

Vmax

Vmin
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Results in the untimed case

Theorem
In the untimed case, the following results hold:

Lower bound

Lower bound,
finite capacity

Interval

existential
problem

universal
problem

games

∈ PTIME ∈ PTIME ∈ UP ∩ coUP
PTIME-hard

∈ PTIME ∈ PTIME ∈ NP
PTIME-hard

∈ PSPACE
NP-hard

∈ PTIME EXPTIME-c.

Refs: [1] Bouyer, Fahrenberg, Larsen, M., Srba. Infinite Runs in Weighted Timed Automata with Energy Constraints (2008).



Results in the 1-clock case

Theorem
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Corner-point abstraction: Only correct if no discrete costs!
In the presence of discrete costs:
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Theorem
In the 1-clock case, the existence of a strategy for maintaining the
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Conclusions and perspectives
Weighted timed automata are a powerful formalism for
modeling resources:

expressive enough for many applications;
several problems remain decidable;
some algorithms can be made symbolic and are implemented
in Uppaal CORA.

Many open problems:
energy constraints for automata with several clocks;
timed automata with observers having richer dynamics.
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