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Time is not always sufficient

@ hybrid automata: timed automata augmented with variables
whose derivative is not constant.

~» examples: leaking gas burner, water-level monitor, ...

x<1,x:=0

x,y,z:=0

x>30, x:=0

Theorem

Reachability is undecidable (even for timed automata with one
stopwatch).

Refs: [1] Henzinger, Kopke, Puri, Varaiya. What's Decidable about Hybrid Automata? (1995).
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@ hybrid automata: timed automata augmented with variables
whose derivative is not constant.

~» examples: leaking gas burner, water-level monitor, ...

x<1,x:=0

x,y,z:=0

x>30, x:=0

@ timed automata with observers: similar to hybrid automata,
but the behavior only depends on clock variables.

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).

[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).
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Optimal reachability

Example

Minimal cost for reaching ©:
22
o min <5t+ 7(3—1t)+ 1) _ 18
0<t<2 5t+5(3—t)+4 20
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Optimal reachability

Example

x<2
p=5
y:=0

/

Minimal cost for reaching ©:
inf mi <5t+7(3— t)+1
i
0<t<2 5t+5(3—t)+4
The optimal schedule consists in
@ waiting 2 time units in (_J;

e going through O.




Optimal reachability

Theorem

Optimal reachability in priced timed automata is
PSPACE-complete.

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
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[3] Bouyer, Brihaye, Bruyére, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).
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Optimal reachability

Theorem

Optimal reachability in priced timed automata is
PSPACE-complete.

Proof.

@ The idea is: “take transitions close to integer dates”;
@ Corner-point abstraction: only consider corners of regions:

) )
p+=0 p+=3 p+=0 p+=2
N j . — -
=
- | . J . J
p=3 p=3 p=3 p=3
) ) ) -~
p+=0 p+=0 p+=2
- > I
x:=0
- | . J
p=3 p=3 p=3 p=5 L]

Refs: [1] Alur, La Torre, Pappas. Optimal Paths in Weighted Timed Automata (2001).
[2] Behrmann et al. Minimum-cost reachability for priced timed automata (2001).

[3] Bouyer, Brihaye, Bruyére, Raskin. On the Optimal Reachability Problem on Weighted Timed Automata (2006).
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Example
Decorate temporal modalities with constraints on cost:
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Example

e G(failure = F<js5prepaired)

@ AG(failure = EFipe<s(repair A AF ost<150 running))
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Undecidability results

Theorem
WMTL model-checking is undecidable. J

Proof.
@ encoding of a two-counter machine;

@ Holds even for one clock and one cost variable.

Ol
Theorem
WCTL model-checking is undecidable. J
Proof.
@ encoding of a two-counter machine;
@ requires three clocks.
O]

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
[2] Brihaye, Bruyére, Raskin. Model-Checking for Weighted Timed Automata (2004).
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Theorem

WCTL model-checking is PSPACE-complete on 1-clock weighted
timed automata.

Proof.
@ region-based algorithm;

@ but region are not fine enough:

(=== | ‘
0 1
1 E[-(EF<1 O) Ux; O]
b@

Refs: [1] Bouyer, Larsen, M. Model-Checking One-Clock Priced Timed Automata (2007).



Decidable subcases

Theorem

WCTL model-checking is PSPACE-complete on 1-clock weighted
timed automata.

Proof.
@ region-based algorithm;
@ but region are not fine enough:

o Refine regions: granularity 1/M!?l is sufficient.

Refs: [1] Bouyer, Larsen, M. Model-Checking One-Clock Priced Timed Automata (2007).
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Weighted timed games

Example
Timed games can also be extended with weights:

x<1
x<1 =1 VR
—(p=2 @ X p=0 p=3
=4 AN T
Ttsaooo= - x<1

@ A strategy for a player indicates which (action or delay)
transition to play;

@ A strategy is winning if all its outcomes are.
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Example

] x<2 -
p=> - ©)

y:=0 .

p+=9

Minimal cost for reaching ©: 20
5t+6(3—t)+1
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Optimal winning strategy

Example

p=
y:=0 <.

7 \\\ x>3
p+=9
Minimal cost for reaching ©: 20
inf ma <5t+6(3—t)+1>
i X
0<t<2 5t+3(3—1t)+9 18
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Example

p=
y:=0 <.

/ .

Minimal cost for reaching ©:

: 5t+6(3—t)+1
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Example

p:
y:=0 ~_

/ .

Minimal cost for reaching ©:
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Optimal winning strategy

Example

Minimal cost for reaching ©:

: 5t+6(3—t)+1
f — 56/3
04t<2 <5t +33-1t)+ 9) /3 1

which is achieved with ¢t =1/3 | |

Corollary

Regions are not sufficient for solving priced timed games.




Computing optimal winning strategies is undecidable

Computing optimal strategies in priced timed games is undecidable.

Theorem J

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
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Computing optimal winning strategies is undecidable

Computing optimal strategies in priced timed games is undecidable.

Theorem J

Proof.

The proof relies on simple modules that will allow encoding a
two-counter machine:

@ Adding the value of clock x to the cost:
@ Adding 1 — x to the cost:

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).



Computing optimal winning strategies is undecidable

Computing optimal strategies in priced timed games is undecidable.

Theorem J

Proof.

The proof relies on simple modules that will allow encoding a
two-counter machine:

@ Checking that y = 2x:

/

i I Add* (x) ! ,—». Add*(x) ! —»l Add=(y) ! ) )

: z=0, NS WEEEEY NS +=2 I
I

: \Z\_b _________________ +/' :

! ] Add™ (x) | ‘—N Add~ (x) | '—>| Add*(y) | )P |

Test(y=2x)

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
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Computing optimal strategies in priced timed games is undecidable.

Theorem J

Proof.

The proof relies on simple modules that will allow encoding a
two-counter machine:

@ Checking that y = 2x:

’
I I
{ PR _ R __ e 2 1
2420: =9 conaioy) J]\:
I
: ~ . cost=3+(y— 2x) _____ /' !
I I
I I

Test(y=2x)

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).



Computing optimal winning strategies is undecidable

Computing optimal strategies in priced timed games is undecidable.

Theorem J

Proof.

The proof relies on simple modules that will allow encoding a
two-counter machine:

@ Checking that y = 2x:
@ Dividing clock x by 2:

________________________________________

_n! - =0 = e
=01 0) o= (o)=L (o) =2
) ) )
| ! ]

: 1 z=0 :

1 ____*____"

: : Test(x=2y) 1 :

Divide,(x)

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).



Computing optimal winning strategies is undecidable

Computing optimal strategies in priced timed games is undecidable.

Theorem J

Proof.

The proof relies on simple modules that will allow encoding a
two-counter machine:

@ encode counter ¢; as x; = 2~ ! and counter ¢ as x, = 37

@ by cleverly juggling with clocks, we can achieve this encoding
with three clocks.

O

Refs: [1] Bouyer, Brihaye, M. Improved Undecidability Results on Weighted Timed Automata (2006).
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Theorem

Turn-based 1-clock priced timed games always admit e-optimal
winning strategies, and such strategies can be computed.

Proof.

@ The procedure terminates;

@ There is a positive granularity for with the region abstraction
is correct;

@ The optimal cost functions are piecewise affine, continuous,
decreasing functions. Their slopes are rates of the automaton.

O

Refs: [1] Bouyer, Cassez, Fleury, Larsen. Optimal Strategies in Priced Timed Game Automata (2004).
[2] Bouyer, Larsen, M., Rasmussen. Almost Optimal Strategies in One-Clock Priced Timed Automata (2006).
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Results in the untimed case

Theorem
In the untimed case, the following results hold:

existential universal
games
problem problem
€ UP N coUP
Lower bound € PTIME e PTIME PTIME-hard
Lower bound, e NP
R y— € PTIME € PTIME PTIME-hard
€ PSPACE
PTIME -C.
Interval NP-hard IS EXPTIME-c

Refs: [1] Bouyer, Fahrenberg, Larsen, M., Srba. Infinite Runs in Weighted Timed Automata with Energy Constraints (2008).
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Proof.

@ Corner-point abstraction:
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( N -3 0
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